Content from Former Microsoft WPF and Silverlight Team Member

Someone pointed me in the direction of a series of great blog posts that have recently been migrated to a github repository. The posts are quite old, dating back to a period between 2005 and 2013 when Beatriz Stollnitz worked for Microsoft as part of the WPF and Silverlight teams. Here are the links to each of the posts – happy reading!

Update 11th August: I’ve forked the repository and have started to work my way through the sample code to a) update it to WPF on .NET 4.7.2 and b) provide a similar example for UWP + Uno (iOS, Android, WASM). Feel free to check it out and help out!

01-DataContext

02-EmptyBinding

03-GetListBoxItem

04-BindToComboBox

05-DisplayMemberPath

06-SelectedValue

07-ChangePanelItemsControl

08-BarGraph

09-CollectionViewSourceSample

10-MasterDetail

11-MasterDetailThreeLevels

12-DataBoundDialogBox

13-TemplatingItems

14-SortingGroups

15-GroupingTreeView

16-GroupByType

17-BoundListView

18-ThreeLevelMasterDetailADO

19-ObjectDataProviderSample

20-InsertingSeparators

21-CustomSorting

24-AsynchronousBinding

25-BindToEnum

26-DataTriggerSample

27-ConvertXaml

28-FilterSample

29-MultipleFilters

30-MultiBindingConverter

31-ChangesMultithreading

32-PolygonBinding

33-PolygonBinding2

34-PolygonBinding3

35-CommonQuestions

36-ADOIndependentView

37-PlanetsListBox

38-UpdateExplicit

39-TreeViewPerformancePart1

40-TreeViewPerformancePart2

41-TreeViewPerformancePart3

42-WPFPresenter

43-BindToXLinq

44-XLinqXMLMasterDetail

45-DebuggingDataBinding

46-DragDropListBox

47-ExpandTreeViewPart1

48-ExpandTreeViewPart2

49-ExpandTreeViewPart3

51-UIVirtualization

52-DataVirtualization

54-PieChartWithLabels

55-PieChartWithLabelsSilverlight

56-PieChartWithLabelsSilverlight

57-DataVirtualization

58-MultipleStyles

59-WPFCollectionViewSource

60-SLCollectionViewSource

61-OredevComputerWeekly

62-DataVirtualizationFiltering

64-DataVirtualizationFilteringSorting

66-SortingHierarchy

67-PieChartWithLabelsUpdates

69-BindRadioButtonsToEnumsPart1

70-BindRadioButtonsToEnumsPart2

71-BindRadioButtonsToEnumsPart3

72-BindRadioButtonsToEnumsPart4

73-BindRadioButtonsToEnumsPart5

74-PositioningDataBoundItems

75-SimultaneousEnableDisable

76-FocusWatcher

77-CaptureWatcher

78-BetterBindableBase

79-BooleanConverters

Using the UWP SplitView on iOS, Android and WebAssembly with Uno

In this post we’re going to cover one of the basics of app navigation which is the use of the UWP SplitView. If you’re coming from iOS and Android development you might be thinking “huh, I don’t even know what that is.” Well the good news is that it’s actually something you’re already familiar with. Whether you’re used to an app that has a master-details layout, or one that uses a burger menu to display a flyout menu, these can both be implemented using the UWP SplitView.

One thing to be aware of is that the UWP SplitView is one of the basic controls that was added early in the UWP lifecycle. Since then there have been other controls added, such as the NavigationView and the MasterDetailsView (Windows Community Toolkit) that provide extended functionality and are worth exploring depending on the requirements of your project.

New Project – Cross-Platform App (Uno Platform)

Let’s get into it – we’re going to start with creating a new project based on the latest Uno Visual Studio Extension (updated at end of July – if you’re using an older version I would recommend updating). I’m also working with the Visual Studio 2019 (16.3 preview 1.0) as this provides the best support for working with WebAssembly.

Cross-Platform App using the Uno Solution Template

Once you’ve created your solution, I would highly recommend that you a) update NuGet references and b) go through each platform and make sure you can build and run the application. However, as at the time of writing do NOT update the Microsoft.Extensions.Logging.* packages – there’s a note in the csproj files that states “Note that for WebAssembly version 1.1.1 of the console logger required.” My recommendation is to leave these packages at v1.1.1 across all projects. For the Uno libraries I pick the latest prerelease versions but be warned that this occasionally backfires as you may get an unstable version – this is why it’s important to run each platform before proceeding!!

Note: One issue I’m currently seeing in the Uno template is that it generates assets (i.e. images) with names that include the scale factor eg scale-200. This is fine for UWP but fails to build for Android. I’ve gone through and just removed the scale factor from the filenames. You’ll need to rebuild your UWP project to make sure it picks up the filename changes correctly.

Note 2: When running the WebAssembly (aka WASM) project, make sure you select “Start without Debugging” in Visual Studio.

Note 3: When running the iOS build you may need to set the Deployment Target in the Info.plist. If you’re using the latest preview of Visual Studio it will pick up iOS 12.4 on the build agent which will cause you app to fail to deploy if you haven’t set the Deployment Target.

Adding the UWP SplitView

Now that we have our new application up and running, it’s time to add the SplitView control.

Design in Blend

For this we’re going to switch over to Blend – yeh, the product still exists and you’ll see in a minute why we’re going to be using it. To make the switch, right-click on the MainPage.xaml in the shared project and select Design in Blend.

Switching to Design in Blend

Switching to Blend will take a few seconds, particularly if this is the first time you’ve ever opened Blend. You’ll also see errors as the iOS and Android projects won’t open – ignore these and don’t worry about the upgrade log that will popup (these are irritating but can be safely ignored as they won’t impact your project).

Despite selecting Design in Blend from the MainPage.xaml, once in Blend, you’ll actually need to use the Solution Explorer window to open MainPage.xaml in the designer. Once you’ve opened MainPage.xaml, Blend should feel fairly familiar, even if this is the first time you’ve used it. This is because a lot of the windows are shared with Visual Studio – the separation between the products is a mix of legacy (don’t want to disrupt the tiny percentage of developers who still use it) and the optimising that design tasks will be done using Blend.

Blend Designer

Adding the SplitView

There are a number of ways to add the SplitView control into the MainPage. If you’re familiar with writing XAML it’s probably just easiest to add the SplitView element. However, to build familiarity with Blend, let’s add the SplitView using the designer. In the Assets window, enter “splitview” to locate the SplitView control. Use the mouse to drag the SplitView down to the Objects and Timeline window at the position in the hierarchy where you want it to appear. In this case we’re going to drop it inside the existing Grid – I typically have a Grid as the root of most pages to allow setting of background and other properties using a application-wide style, independently of what content is nested within the Grid.

Adding the UWP SplitView

Adding the SplitView this way will add it as the second child of the Grid, immediately following the existing TextBlock. As we want the SplitView to take up the entire space of the page, we’re going to move the TextBlock in the main content area by dragging the TextBlock into the Grid that is nested within the SplitView. The XAML of the page should now look like the following:

<Page
    x:Class="UwpSplitViewSample.MainPage"
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
    xmlns:local="using:UwpSplitViewSample"
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
    mc:Ignorable="d">
    <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
        <SplitView>
            <SplitView.Pane>
                <Grid />
            </SplitView.Pane>
            <Grid>
                <TextBlock
                    Margin="20,20,20,20"
                    FontSize="30"
                    Text="Hello, world !" />
            </Grid>
        </SplitView>
    </Grid>
</Page>

The SplitView is made up of two distinct areas: the main content area and the pane that can be shown/hidden (i.e. the flyout). From this code we can see that the SplitView as two nested XAML elements which align to the SplitView areas. The first is the SplitView.Pane which defines the layout of the content that will appear within the pane/flyout of the SplitView. The second defines the layout of content to appear within the main content area of the SplitView, in this case a Grid with a TextBlock contained within it.

Adjusting Layout with Blend

I’ll repeat this: For those of us familiar with writing XAML, you’ll find that manually crafting XAML is by far the quickest way to add and edit elements. However, Blend provides a number of shortcuts for positioning elements that can come in handy. Some of which we’ll cover here.

Designing the SplitView Pane

For the purpose of this post, all we’re going to do is to add a StackPanel with a TextBlock and Button as children to both the SplitView.Pane and the SplitView. The TextBlock will be used to indicate what part of the SplitView it is (Pane or Content) and the Button will be used to Show and Hide the pane of the SplitView.

Let’s start with the SplitView.Pane which already has a Grid element. In the Objects and Timeline window, right-click on the Grid and select Change Layout Type, followed by StackPanel.

Change Layout Type to StackPanel

You should see the Grid change to StackPanel and remains selected in the Objects and Timeline window. Next, with the StackPanel still in focus, use the Assets window to locate the TextBlock and double-click on TextBlock to add a TextBlock as a child to the StackPanel. Repeat, this time for a Button.

We’re going to position the StackPanel in the centre of the SplitView pane. To do this, again keep the StackPanel selected in the Objects and Timeline window, we’re going to go to the Properties window and scroll down to the Layout section at set the HorizontalAlignment and VerticalAlignment properties to Center.

Centering the StackPanel

Whilst we’re using the Properties window, select the TextBlock and change the Text property to “Pane”, and then select the Button and change the Content property to “Hide Pane” (Note that unlike Xamarin.Forms that has a Text property, to set the text on a Button in UWP XAML you need to set the Content property).

The last thing we’re going to do with the XAML for the SplitView.Pane is to add an event handler to the Click event of the Button. With the Button selected in the Objects and Timeline window, go to the Properties window, and click on the lightning bold icon to switch from properties to events view. Locate the Click event and type the name of the event handler you want to create, in this case PaneButtonClick. When you press Enter the PaneButtonClick method will be created in the MainPage.xaml.cs code behind file and the XAML will be updated with the Click property.

Adding an Event Handler for the Click Event

For the moment, that’s where we’ll leave the XAML for the SplitView.Pane and we’ll implement the logic for the Click event handler shortly.

Designing the SplitView Content

The layout of the SplitView content is going to be very similar to that of the pane: A StackPanel with nested TextBlock and Button. However, we’re going to go about it slightly differently, considering the fact that we already have a TextBlock nested in a Grid in the content area. We’re going to start by wrapping the TextBlock in a StackPanel. To do this, right-click somewhere in the TextBlock on the designer and select Group Into, followed by StackPanel (this also works if you right-click on the TextBlock in the Objects and Timeline window).

After doing this the hierarchy of elements in the SplitView content will be Grid, StackPanel, TextBlock. However, if you look at the XAML you’ll notice that Blend has added some additional attributes, setting the Margin on the StackPanel and the Height and Width on the TextBlock. To remove these, we can just right-click the StackPanel and select Layout, followed by Reset All. Repeat this on the TextBlock.

From here we can repeat the remaining steps that we did for the SplitView pane:

  • Add a Button to the StackPanel
  • Set HorizontalAlignment and VerticalAlignment on the StackPanel to Center
  • Set Text on the TextBlock to “Content Area”
  • Set Content on the Button to “Show Pane”
  • Add an event handler called ShowPaneButtonClick to the Button Click event

The final XAML in MainPage.xaml should look similar to:

<Page x:Class="UwpSplitViewSample.MainPage"
      xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
      xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
      xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
      xmlns:local="using:UwpSplitViewSample"
      xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
      mc:Ignorable="d">
  <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
    <SplitView>
      <SplitView.Pane>
        <StackPanel HorizontalAlignment="Center"
                    VerticalAlignment="Center">
          <TextBlock Text="Pane"
                     TextWrapping="Wrap" />
          <Button Click="PaneButtonClick"
                  Content="Hide Pane" />
        </StackPanel>
      </SplitView.Pane>
      <Grid>
        <StackPanel HorizontalAlignment="Center"
                    VerticalAlignment="Center"
                    Orientation="Vertical">
          <TextBlock Text="Content Area" />
          <Button Click="ShowPaneButtonClick"
                  Content="Show Pane" />
        </StackPanel>
      </Grid>
    </SplitView>
  </Grid>
</Page>

DisplayMode Property on the UWP SplitView

The UWP SplitView has two properties that are worth exploring in a bit of detail and we’ll use these to control the behaviour, or should I say the layout, of the SplitView based on screen width. Let’s start with the easy one, which is the IsPaneOpen property. As you can imagine from the name, this property indicates whether the pane of the SplitView is currently open (i.e. displayed in full, rather than hidden or in compact mode), or not.

The second property worth looking at is the DisplayMode of the SplitView, and has the following four possible values:

  • Overlay – When the pane is visible it appears as an overlay across the content area. It doesn’t affect the size of the content area when it is shown/hidden.
  • Inline – When the pane is displayed it reduces the size of the content area by the width of the pane. As the pane is shown/hidden the width of the content area shrinks and grows accordingly.
  • CompactOverlay – Same as Overlay, except when the pane isn’t open, it still takes up space on the page equal to the CompactPaneLength property. Typically the compact view would show a list of icon buttons as a summary of the options available in the pane when it’s open.
  • CompactInline – Same as Inline, except when the pane isn’t open it still takes up space on the page equal to the CompactPaneLength property.

We’ll leave the use of the CompactOverlay and CompactInline options for the moment and focus on the other two options. The Overlay option is great for when the size of the application is narrow, for example on a mobile phone. The Inline option is better suited for when the application has sufficient width to allow the pane to be shown and there still to remain sufficient content area to be useful.

Using VisualState to Set DisplayMode

With this in mind, we’re going to use visual states to set the DisplayMode property based on the width of the application. For the purpose of this post we’re going to use a split point of 900, meaning that if the width of the application is greater than 900 the DisplayMode will be set to Inline. If it’s below 900 it’ll be set to Overlay.

To begin with, we’re going to set the default value of the DisplayMode to Compact by adding DisplayMode=”Compact” to the SplitView element. Next in Blend we’re going to add two visual states via the States window. In the States window, click the Add state group button and give the state group a name, SizeStateGroup.

Adding a Visual State Group

Next, click the Add state button twice to add two visual states and name them NarrowState and WideState. The actual names of the visual state group and the states are only for your benefit at this point, so you can name them according to what makes sense for you.

Adding a Visual State

Click on the WideState and you should see a red dot appear along side the state name. This indicates that Blend is in visual state editing mode. You should also see a red border appear around the main design area. Note that when you’re in visual state editing mode in Blend, any change you make via the tool windows (eg changing a property) will be tracked against the selected visual state.

Visual State Editing Mode

In visual state editing mode for the WideState, use the Properties window to change the DisplayMode to Inline. Next click the lightning icon button, Edit Adaptive Triggers, alongside the WideState visual state.

Adding an AdaptiveTrigger

In the Collection Editor: StateTriggers, set the MinWindowHeight to 0 and the MinWindowWidth to 900. This is adding a trigger which will return true when the width of the application exceeds 900. At this point the VisualStateManager will automatically switch to the WideState, without you having to explicitly run any code. Repeat the process of setting an adaptive trigger but this time for the NarrowState and set both MinWindowHeight and MinWindowWidth to 0.

The final XAML:

<Page x:Class="UwpSplitViewSample.MainPage"
      xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
      xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
      xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
      xmlns:local="using:UwpSplitViewSample"
      xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
      mc:Ignorable="d">

  <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
    <SplitView x:Name="splitView"
               DisplayMode="Overlay">
      <SplitView.Pane>
        <StackPanel HorizontalAlignment="Center"
                    VerticalAlignment="Center">
          <TextBlock Text="Pane"
                     TextWrapping="Wrap" />
          <Button Click="PaneButtonClick"
                  Content="Hide Pane" />
        </StackPanel>
      </SplitView.Pane>
      <Grid>
        <StackPanel HorizontalAlignment="Center"
                    VerticalAlignment="Center"
                    Orientation="Vertical">
          <TextBlock Text="Content Area" />
          <Button Click="ShowPaneButtonClick"
                  Content="Show Pane" />
        </StackPanel>
      </Grid>
    </SplitView>
    <VisualStateManager.VisualStateGroups>
      <VisualStateGroup x:Name="SizeStateGroup">
       
        <VisualState x:Name="WideState">
          <VisualState.StateTriggers>
            <AdaptiveTrigger MinWindowHeight="0"
                             MinWindowWidth="900" />
          </VisualState.StateTriggers>
          <VisualState.Setters>
            <Setter Target="splitView.(SplitView.DisplayMode)" Value="Inline" />
          </VisualState.Setters>
        </VisualState>
        <VisualState x:Name="NarrowState">
          <VisualState.StateTriggers>
            <AdaptiveTrigger MinWindowHeight="0"
                             MinWindowWidth="0" />
          </VisualState.StateTriggers>
        </VisualState>
      </VisualStateGroup>
    </VisualStateManager.VisualStateGroups>
  </Grid>
</Page>

Note: In UWP the order of the VisualState elements doesn’t matter as all the AdaptiveTriggers are evaluated and the best match is determined. For example if the application width is 1000, the conditions for the triggers for both NarrowState and WideState are met. However, the WideState is a better match since the width is > 900. For Uno (i.e. iOS, Android and WebAssembly), the order matters – the first trigger to match, wins. In the above XAML you’ll see the WideState before the NarrowState to make sure that if the application width is > 900, the WideState visual state is active.

Opening and Closing the UWP SplitView Pane

If you run the application at this point and adjust the width of the application the DisplayMode property will switch between Inline and Overlay. However, you won’t notice any change because we currently don’t have a way to open the pane. To do this we’ll add some code to the Click event handlers we created earlier, as follows:

private void PaneButtonClick(object sender, RoutedEventArgs e)
{
    splitView.IsPaneOpen = false;
}
private void ShowPaneButtonClick(object sender, RoutedEventArgs e)
{
    splitView.IsPaneOpen = true;
}

UWP SplitView In Action

With all the XAML and code in place, let’s see it in action on all various platforms.

UWP with Resizing Application
Opening the Pane on WASM
Auto-dismiss Flyout on Android

In this post we’ve covered off how easily you can build a responsive interface using Blend and the UWP SplitView. The fact that it then just works on iOS, Android and WebAssembly is a big bonus thanks to the Uno platform.

Optimising Multi-Targeting with Visual Studio Solution Filters

Over time Visual Studio has progressively improved support for solutions that have a large number of projects. MvvmCross used to be over 200 projects to handle each of the target platforms it supports. With the introduction of multi-targeted projects the number of projects dropped significantly to around 50 projects. For example, the core MvvmCross project has 10 target framework monikers (TFM), instead of having a separate project for each framework. However, the decrease in load time (due to fewer projects) was offset by an increase in build time. Rebuilding the MvvmCross project triggers a build for each TFM, so the project is built 10 times. In this post, I’ll walk through a couple of techniques we use to reduce the build time when working with MvvmCross.

Whilst MvvmCross supports a wide range of target platforms, the reality is that when I’m making changes to MvvmCross I’ll be doing most of the work against one platform. For example being on Windows I might pick Android or Windows and use either the Playground or Playground.Forms sample apps to run up and test my changes. Since I’m working with only one platform at any given time, I don’t need every target framework to be built every time I make a change. Unfortunately there’s no way in Visual Studio to tell it not to build every target framework.

Conditional Target Frameworks

To get around the limitations of Visual Studio we’ve introduced some conditional logic into the project files that determine which TFMs are built. If we look at the top of the MvvmCross.csproj file we can see that there are a number of TFM lists.

<Project Sdk="MSBuild.Sdk.Extras">
  <PropertyGroup Condition=" '$(TargetsToBuild)' == 'All' ">
    <TargetFrameworks Condition=" '$(OS)' == 'Windows_NT' ">netstandard2.0;net461;Xamarin.iOS10;Xamarin.Mac20;Xamarin.TVOS10;Xamarin.WatchOS10;MonoAndroid90;tizen40;netcoreapp2.1;uap10.0.16299</TargetFrameworks>
    <TargetFrameworks Condition=" '$(OS)' != 'Windows_NT' ">netstandard2.0;net461;Xamarin.iOS10;Xamarin.Mac20;Xamarin.TVOS10;Xamarin.WatchOS10;MonoAndroid90;tizen40;netcoreapp2.1</TargetFrameworks>
  </PropertyGroup>

  <PropertyGroup Condition=" '$(TargetsToBuild)' != 'All' ">
    <TargetFrameworks Condition=" '$(TargetsToBuild)' == 'Android' ">netstandard2.0;MonoAndroid90;</TargetFrameworks>
    <TargetFrameworks Condition=" '$(TargetsToBuild)' == 'Uap' ">netstandard2.0;uap10.0.16299</TargetFrameworks>
    <TargetFrameworks Condition=" '$(TargetsToBuild)' == 'iOS' ">netstandard2.0;Xamarin.iOS10</TargetFrameworks>
  </PropertyGroup>

In the Directory.build.props file for MvvmCross, which we’ll come to in a minute, we’ve defined a property called TargetsToBuild. If this is set to ‘All’, we set the TargetFrameworks property to include all the TFMs (except when the OS isn’t Windows_NT where we leave out Uap). However, if the TargetsToBuild is something different we restrict the TargetFrameworks property to the appropriate TFM (eg MonoAndroid90 when the TargetsToBuild is ‘Android’). We also include netstandard2.0 to help ensure developers don’t accidentally include platform specific code in files that are used by all platforms.

I mentioned that we define the TargetsToBuild in the Directory.build.props file. Currently what you’ll find in the Directory.build.props file in the MvvmCross repository is something that looks like the following:

<PropertyGroup Condition=" '$(Configuration)' == 'Debug' ">
  <TargetsToBuild>All</TargetsToBuild> 
  <!--<TargetsToBuild>Android</TargetsToBuild>-->
  <!--<TargetsToBuild>Uap</TargetsToBuild>--> 
  <!--<TargetsToBuild>iOS</TargetsToBuild>--> 
</PropertyGroup>

<PropertyGroup Condition=" '$(Configuration)' != 'Debug' ">
  <TargetsToBuild>All</TargetsToBuild>
</PropertyGroup>

The first PropertyGroup, which is used when the build Configuration is set to Debug, allows the developer to switch TargetsToBuild by simply commenting and uncommenting the different values. For example to switch to Android I simply comment out the line with ‘All’ in it and uncomment the ‘Android’ line. Note that you have to restart Visual Studio for this change to take effect.

Solution Filters (.slnf)

Using the TargetsToBuild property works really well and significantly cuts down on the build time when doing development with MvvmCross. However, whenever I step in to work on MvvmCross I find it frustrating that Visual Studio has to load all 50+ projects when I’m not going to use them all. I’ve noticed recently that a couple of OSS projects such as Platform.Uno and Allan Richie’s Shiny have started to include solution filter files (.slnf). Solution Filter files make it easy to open a solution with only a subset of projects loaded.

There’s plenty of documentation on how to create a solution filter file, so I’m not going to cover that here. However, for MvvmCross it makes sense to have different solution filters for work with each platform. In my PR I’ve created filters for All, Android, iOS and Uap, which match the different TargetsToBuild options (the reason for this will become evident shortly).

Launch Automation

I was looking around for a way to combine solution filtering with the conditional logic for TFMs. Unfortunately there’s currently no mechanism for linking them. What this means is that developers wanting to work for particular platform have to first set the TargetsToBuild in the Directory.build.props, and then open the solution using the appropriate filter file.

I figured that if I can’t link the solution filter with a specific list of TFMs, the least I could do was to automate the process of setting the TargetsToBuild and launching the solution. For this I created a series of .bat files (yeh, old school I know): LaunchVS.All.bat, LaunchVS.Android.bat, LaunchVS.iOS.bat and LaunchVS.Uap.bat. Each of these platform specific launch files invokes “LaunchVS.bat XXX” where XXX is the corresponding platform (eg “LaunchVS.bat Android”).

The LaunchVS batch file does two things:

  • Invokes a powershell command that does a find and replace to update a property, TargetsToBuildDeveloperOverride, in the Directory.build.props file.
  • Launches Visual Studio by starting the corresponding solution filter file. Hence the reason why the names of the filter files needed to match the platforms options for TargetsToBuild.
powershell -Command "(gc Directory.build.props) -replace '<TargetsToBuildDeveloperOverride>[a-zA-Z]*</TargetsToBuildDeveloperOverride>', '<TargetsToBuildDeveloperOverride>%~1</TargetsToBuildDeveloperOverride> ' | Out-File -encoding ASCII Directory.build.props"
start MvvmCross.%~1.slnf

At this point you might be wondering why we’re updating the TargetsToBuildDeveloperOverride property instead of TargetsToBuild. The reason for this is that if we simply did a find-and-replace using the TargetsToBuild property it would replace both the value used for the Debug configuration but also the other configurations. It’s important that we don’t modify the Release configuration by accidentally changing the TFMs, since this could then accidentally be committed to the repository. To avoid this problem I created the TargetsToBuildDeveloperOverride property which is only used to set the TargetsToBuild property for the Debug configuration.

<PropertyGroup>
  <TargetsToBuildDeveloperOverride>Uap</TargetsToBuildDeveloperOverride>          
</PropertyGroup>

<PropertyGroup Condition=" '$(Configuration)' == 'Debug' ">
  <TargetsToBuild>$(TargetsToBuildDeveloperOverride)</TargetsToBuild> 
</PropertyGroup>

<PropertyGroup Condition=" '$(Configuration)' != 'Debug' ">
  <TargetsToBuild>All</TargetsToBuild>
</PropertyGroup>

With these changes, all a developer has to do when working with a particular platform is to double-click the appropriate .bat file. The Directory.build.props will be updated and the corresponding .slnf file will be launched. If the updated Directory.build.props does accidentally get committed to the MvvmCross repository it won’t affect the Release build configuration. The LaunchVS batch file is clever enough to switch from one platform to another without the developer having to undo changes to the Directory.build.props file.

Hopefully in this post you’ve seen one option for switching TFMs and making it easier for developers to work with a multi-targeted solution. If you use multi-targeting in your application or library, it’s work considering adding filtering and conditional TFMs to make development easier.

Fiddler Debugging Http/Https Traffic for Xamarin iOS, Android and Windows (UWP) Applications

Debugging Http/Https Traffic using Fiddler for Xamarin iOS, Android and Windows (UWP) Applications

One of the most frustrating things as a frontend developer is when you are receiving incorrect data. You don’t know whether the problem lies with your application, or the backend services. The easiest way to validate this is to pretend to be a hacker. You can stage a man-in-the-middle attack on your own application. Debugging using tools like Fiddler or Charles can be used to inspect the traffic from your application. Unfortunately, the same effort that goes into protecting apps from such attacks, also means that it is harder for developers to setup Fiddler debugging.

In this post I’ll walk through setting up Fiddler debugging for a Xamarin.Forms application. The same basic approach will work for a native or Xamarin iOS/Android application as well. For this post I’ve created an application using the Blank Xamarin.Forms template that comes with Visual Studio 2019. I’ve selected to target all three platforms.

In the OnAppearing method in the MainPage of the Xamarin.Forms application, I’ve added some basic code to retrieve a string for a Https endpoint. We’ll use a Https endpoint on the assumption that if we can intercept Https then we can also intercept Http traffic.

protected override async void OnAppearing()
{
     base.OnAppearing();
     var client = new HttpClient();
     var users = await client.GetStringAsync("https://reqres.in/api/users?page=0");
     Debug.WriteLine(users);
}

Setting Up Fiddler Debugging

Before we get started with the individual platforms, it’s worth checking your configuration for Fiddler:

  • You need to make sure you have setup Https traffic decryption. I’m not going to repeat the documentation, so check out how to Configure Fiddler to Decrypt HTTPS Traffic.
  • You’ll also need to setup Fiddler debugging for remote traffic. This can be done by opening the Options window. Under the Connections tab, make sure the “Allow remote computers to connect” checkbox is checked. If you’re running Skype, or some other communication tools, it may have jumped onto the default port configured in Fiddler. In this case you can adjust the “Fiddler listens on port”.
Fiddler Debugging Options Window
Enabling remote connection in Fiddler

Windows (UWP)

I’ll start with Windows, because it’s relatively straight forward to get setup. With Fiddler running, you can run the UWP project from within Visual Studio and Fiddler debugging will work. Fiddler will capture the Https traffic without any further configuration or setup.

Fiddler Debugging
Capturing network traffic in Fiddler

In some cases, you need to make sure your application is added to the exemption list, so that traffic can be routed to the local machine. For more information see the blog post Revisiting Fiddler and Win8+ Immersive applications. To check this, click the WinConfig button in the top left corner of the Fiddler interface.

WinConfig
Click WinConfig to adjust the exemption list for Windows 10 apps

Locate your application and confirm that there is a check in the box next to your application. If it’s not checked, check the box, and then click Save Changes

Exemption Utility
Locate your UWP application and check the box to add your application to exemption list

One other issue I’ve seen but can’t reproduce reliably, is that sometimes when you run your application from Visual Studio it unchecks the box in the WinConfig in Fiddler. If for some reason you no longer see traffic in Fiddler for your application, go back and double check the exemption list in Fiddler.

Diagnosing Issues with Fiddler on Windows

When configuring Https traffic decryption, you’ll be prompted to install and trust the Fiddler root certificate. If you don’t accept all the prompts, Fiddler debugging for Windows applications will not work. Windows traffic debugging works without any further configuration because the Fiddler root certificate is trusted on the machine running Fiddler.

If you’re attempting to run the Windows application on a different machine than the one running Fiddler, you’ll need to install and trust the Fiddler root certificate. This is in addition to setting the remote machine as a proxy, which is a topic for another post. Navigate to http://[ipaddress]:[port] where [ipaddress] is the ip address of the machine running Fiddler and the [port] is the port number that Fiddler is listening on. Do NOT use https as this site is http only. You should see a screen similar to the following image – if you don’t, make sure you check that Fiddler is running!!

Fiddler Debugging Echo Service
Click on the FiddlerRoot certificate to install the root certificate

Click on the FiddlerRoot Certificate and install as a Trusted Certificate Authority on the Local Machine. This should allow your Windows application to trust Fiddler.

iOS Fiddler Debugging

Next up is iOS and in this case we’re going to use the iOS simulator. The same process should work with any iOS device that’s on the same local network as the machine running Fiddler. There are two steps to setup iOS for traffic debugging:

  1. Trust the Fiddler root certificate, and
  2. Set the http proxy to use the machine running Fiddler.

To setup the simulator, first launch the iOS application from Visual Studio. If you’re on Windows, this will launch the remote viewer for the simulator. Once the simulator is running, stop debugging and we’ll setup the simulator for traffic debugging.

Trusting the Fiddler Certificate

Navigate to http:[ipaddress]:[port] (eg http://192.168.1.109:8888) to load the Fiddler echo page. Then click on the Fiddler Certificate link. Follow the prompts to download and install the certificate.

Fiddler Echo Service iPhone Download Certificate iPhone Download Profile iPhone

In addition to downloading the certificate you also need to install it. Go to Settings / General / Profile and click through on the FiddlerRoot profile in order to Install it.

image image image image image image image

The Fiddler root certificate needs to be trusted as a root certificate. Go to Settings / About / Certificate Trust Settings and toggle the switch next to the FiddlerRoot certificate. Fiddler generates a certificate for each site you go to that is derived from the root certificate, so the root certificate needs to be installed as a trusted certificate.

image image image image

The only difference between a real iOS device and the simulator is that on a real iOS device you can set a network proxy. There are online tutorials, such as this one, for instructions on setting a proxy. Unfortunately, setting up a proxy this isn’t configurable on the simulator. If you want to use a proxy in the simulator, you can set the proxy on the mac running the simulator but this would affect all traffic on the mac. Alternatively, when running on the simulator, we can adjust the HttpClient to use a WebProxy using the following code:

var handler = new HttpClientHandler();
handler.Proxy = new WebProxy("192.168.1.109", 8888);
var client = new HttpClient(handler);

Running the iOS application should show network traffic in Fiddler debugging window. You should still see the returned data printed out in the Output window (ie from the Debug.WriteLine statement).

Android Fiddler Debugging

For Android I’m going to use the Android Simulator. Real devices should behave similarly, assuming they’re connected to the same local network as the machine running Fiddler.

Unlike iOS, that will use any proxy configured for the device, for Android you need to explicitly opt in to use a proxy in your code. You’ll need to use code similar to the following on both emulator and real devices:

var handler = new HttpClientHandler();
handler.Proxy = new WebProxy("192.168.1.109", 8888);
var client = new HttpClient(handler);

What’s a little scary about this code is that it “just works”. You might be thinking that this is a good thing. However, it does raise the question of how much of the system security model does the Microsoft built HttpClientHandler respect. What I would have expected is an SSL fail exception because the Fiddler root certificate isn’t trusted by the emulator. Furthermore, the application is not configured to use any user certificates.

The other thing to point out here is that you should not be using the HttpClientHandler. I’ve discussed this in my previous post on working with the HttpClient. Let’s change our code by moving it into the OnCreate method of the Android head project. We’ll also change over to using the AndroidClientHandler.

protected override async void OnCreate(Bundle savedInstanceState)
{
     ...
     var handler = new AndroidClientHandler();
     handler.Proxy = new WebProxy("192.168.1.109", 8888);
     var client = new HttpClient(handler);
     var users = await client.GetStringAsync("https://reqres.in/api/users?page=0");
     System.Diagnostics.Debug.WriteLine(users);
}

When we run the application we see the very familiar SSL handshake exception being raised, which is what we should expect. To get things to work, we now need to install the Fiddler certificate and configure the application to use user certificates.

Install the Fiddler Root Certificate

To install the Fiddler root certificate, navigate to http:[ipaddress]:[port] (eg http://192.168.1.109:8888) to load the Fiddler echo page. Click on the Fiddler Certificate link in order to download the certificate. Follow the prompts to download and install the certificate

image image image image image  image

After installing the certificate go to Setting / Security and Location / Encryption & credentials / User credentials to inspect the certificate

image  image

With the certificate installed into the user store, you need to configure the Android project to allow the use of certificates from the user store. In my post Working with Self Signed Certificates (Certificate Pinning) in Android Applications with Xamarin.Forms, I covered this in detail. The quick summary is that you need to create a network_security_config.xml file which sets the trust-anchors property (set using the debug-overrides element) to include certificates from the user store. You then need to reference this xml file from the networkSecurityConfig attribute on the application element in the AndroidManifest.xml file.

After installing the certificate and adding the network security configuration to the Android application you should now see network requests from the application appear within Fiddler debugging window.

Side Note: Links on how to setup your iOS, Android or Windows device for remote debugging

Side Note: Links on how to setup your iOS, Android or Windows device for remote debugging

Whether it be for convenience, or out of necessity, being about to set up remote debugging to your device makes for a better debugging experience. Particularly if you’re working on a Windows machine, it’s really useful to not have to sit within a meter of the machine running the build agent. 

iOS on WiFi

On iOS, you need to connect your device to Xcode this first time. Thereafter you can debug across a WiFi network. Note that there are some limitations, specifically older devices won’t support network debugging.

Configure Remote Debugging for iOS

Android ADB Configuration

For Android, you need to configure ADB to connect to your device. Note that this configuration only lasts whilst the IP address of the device is retained. If a new IP address is leased, you’ll need to reconfigure ADB to allow for remote debugging.

Windows Remote Machine Setup for Remote Debugging

With a Windows application, use the debugging tools to connect to your device and then debug using the remote machine option in Visual Studio.

Remote Machine settings

The ability to do remote debugging is particularly useful when developing an Xbox application. With the Xbox running in Dev Mode it’s possible to use the Find option to locate the address of the Xbox. Debugging an Xbox application is then the same as debugging any other Windows 10 application.

If you need to diagnose the network traffic from your application, check out the post on using Fiddler for debugging


Nick Randolph @thenickrandolph

If you need help debugging your application, contact Built to Roam

 


Self Signed iOS Certifcates and Certificate Pinning in a Xamarin.Forms application

Working with Self Signed Certificates (Certificate Pinning) in iOS Application with Xamarin.Forms

The next post in the app security series looks at working with self-signed certificates in an iOS application. Previous posts in this sequence are:

In this post we’re going to cover:

1) accessing non-secure services

2) trusting a self-signed certificate and

3) handling certificate validation.

This gives you all the options you should need when accessing which security option to use during development. It will also cover how to implement certificate pinning in the production version of your app.

Non-Secure (i.e. Http) Services

iOS is secure by default, which means that, by default, an iOS application can only connect to services over Https. The certificate will be verified against one of the well known certificate authorities. Most production services will use a certificate that has been issued by a well know certificate authority. For example, when you deploy a service to Azure App Service, the generated endpoint (eg myservices.azurewebsites.net) already has a Https endpoint with a certificate that is trusted.

In some cases being able to connect to plain-text services may useful. For example,when you’re running the services locally, or you’re attempting to connect to a service in an environment, where there is no https endpoint. In these cases, you can adjust the behaviour of the iOS application so that it can connect to a non-secure (ie http) endpoint.

Accessing Non-Secure Services

Let’s see this in action by changing our the endpoint of our service request to http://192.168.1.107:5000. The endpoint is configured for both https on port 5001 and http on port 5000. If you are trying on a new ASP.NET Core 3 project, don’t forget that the template comes with the line UseHttpRedirection in startup.cs so. If you want to expose an http endpoint you’ll need to remove that line.

image

In the iOS application if you simply change the endpoint to http://192.168.1.107:5000, the application will operate correctly. This is despite all the concern that http connections aren’t supported. This is because there’s a clear set of exceptions to the Https rule on iOS:

image

If you want to use http but instead of using an IP address (ie the exclusion we just saw) you have a domain name. Let’s try this by changing the endpoint to http://192.168.1.107.xip.io:5000. BIG shout out to the xip.io service which is super cool. You can enter any ip address before the xip.io and the returned ip address from doing a DNS lookup will be the same ip address.

image

When we run the iOS application and it attempts to make the service call we get the following exception raised within Visual Studio:

Unhandled Exception:
System.Net.WebException: <Timeout exceeded getting exception details> occurred

This isn’t very meaningful. However, in the Output window there’s much more information:T

Unhandled Exception:
System.Net.WebException: The resource could not be loaded because the App Transport Security policy requires the use of a secure connection. ---> Foundation.NSErrorException: Error Domain=NSURLErrorDomain Code=-1022 "The resource could not be loaded because the App Transport Security policy requires the use of a secure connection." UserInfo={NSLocalizedDescription=The resource could not be loaded because the App Transport Security policy requires the use of a secure connection., NSErrorFailingURLStringKey=http://192.168.1.107.xip.io:5000/api/values

Allowing Insecure Connections

This exception we can combat by including an exception in the Info.plist:

<key>NSAppTransportSecurity</key>
<dict>
   <key>NSExceptionDomains</key>
   <dict>
     <key>192.168.1.107.xip.io</key>
     <dict>
       <key>NSExceptionAllowsInsecureHTTPLoads</key>
       <true />
     </dict>
   </dict>
</dict>

Adding this to the plist will exclude the listed domain from the App Transport Security policy. Another alternative is to use the NSAllowArbitraryLoads attribute.  You should avoid using this attribute as it effectively disables the security policy for any endpoint that the app connects to.

<key>NSAppTransportSecurity</key>
<dict>
   <key>NSAllowsArbitraryLoads</key>
   <true />
</dict>

So that’s it for accessing non-secure, or Http, endpoints. Simply add the endpoint to the NSExceptionDomains element in the Info.plist file and you’re good to go.

Trusting Self-Signed Certificates

Now let’s go back to connecting to a secure endpoint. This time we’re going to keep with using a xip.io address to ensure any security policies are enforced. The secure endpoint would be https://192.168.1.107.xip.io:5001. I’ve reissued the certificate used by the ASP.NET Core application to include 192.168.1.107.xip.io in the alternative names section:

image

You would expect this to work since the endpoint domain is already listed in the Info.plist file (see earlier on doing this using the NSExceptionDomains). Unfortunately there is still an error similar to the following.

System.Net.WebException: The certificate for this server is invalid. You might be connecting to a server that is pretending to be “192.168.1.107.xip.io” which could put your confidential information at risk.

The information in this error is only partially correct. The certificate for the server is actually valid, it’s just that the app/device isn’t able to verify the integrity of the certificate.

Working with Public Keys

We need to find a way for the device to trust the certificate being returned by the server. By far the easiest way to get the certificate to be trust by applications running on an iOS device, is to install the public key for the certificate onto the device. To do this we need the public key, which we can extract from the pfx file used by the ASP.NET Core service, using the following openssl command (This site is very useful for Openssl commands):

openssl pkcs12 -in kestrel.pfx -out kestrel.pem -nodes

This extracts the public key in pem format. iOS needs der format. Luckily there’s again an openssl command for converting the files.

openssl x509 -outform der -in kestrel.pem -out kestrel.der

To get the public key to the device you can either share a hyperlink (ie upload the der file and share a link) or email the file to your self and open it on the device. My preference is just to add the file to my dropbox and then open the corresponding link using Safari on the device. Select the Direct Download option and the file downloads, extracts and attempts to installs the certificate

image

After clicking on Direct download you should see a prompt from the OS about installing a profile that has been installed from a website. We understand the risk so click on Allow. You will then see a confirmation prompt, indicating the Profile has been Downloaded.

imageimage

Installing iOS Root Certificate

It’s important to read the second prompt closely because what it’s saying is that you still need to go to Settings in order to complete the installation of the profile (which in this case is just a certificate). Open Settings / General / Profile and then select the profile for 192.168.1.107.xip.io you’ll see information about the certificate and the ability to Install (top right corner) the certificate.

image

After clicking Install and following the prompts you’ll be returned to this screen. The link to Install will change to Done. However, the certificate will be marked as Not Verified. This is because the root certificate, which in this case is the root certificate used by mkcert, is not trusted by the device.

image

Unfortunately since the certificate isn’t trusted, the application will still fail to connect to this endpoint. For the moment we’ll remove this certificate as it’s not helpful.

Trusting the Root iOS Certificate

Let’s repeat the process of installing the certificate but this time let’s install the root certificate used by mkcert. The public key can be found at C:Users[username]AppDataLocalmkcertrootCA.pem and when you attempt to install it on the device you should see something similar to

image image

Note the difference after the certificate has been installed – it is clearly marked as Verified in green.

To prevent profiles being accidentally downloaded and installed by users and for them to have full access to the device, it is necessary to manually trust certificates. The certificate settings can be found under Settings / General / About / Certificate Trust Settings. On this screen you can control which profiles (ie certificates) are fully trusted.

image

After toggling the full trust setting we’re good to try our application. We’ve not had to make any changes to the application itself. After installing the correct certificate onto the device, we’re able to connect to the secured services. Marking the root certificate as trusted on this device, also removes the need for the NSExceptionDomains section in the Info.plist file.

Validating Server Certificates (i.e. Certificate Pinning)

In this last section we’re going to look at how you can specify a certificate within the application itself. This will to allow requests to be made to the service with the self-signed certificate. Before proceeding you should removed any certificates that were previously installed.

Currently (at the time of writing) there is no way to override the certificate validation process for the out of the box NSUrlSessionHandler. There’s been work done in the past to provide a better alternative, such as the ModernHttpClient. However, most do not seem to work with self-signed certificates. They may have worked well with self-signed certificates back when the library was created but as it’s no longer maintained it appears to not support self-signed certificates.

Using the NSUrlSessionHandler

Even the sample project put together by Jonathan Peppers on SSLPinning doesn’t appear to work. Luckily with a minor tweak it’s possible to use the revised NSUrlSessionHandler to permit access to the self-signed service. Using the source code in the SSLPinning repository as the starting point, I’ve collated all the pieces of the alternative NSUrlSessionHAndler into a single file (Full source code). The main changes are:

- The addition of an UntrustedCertificate property which will accept the raw data from the .der public key

public NSData UntrustedCertificate { get; set; }


- Modification to the processing included in the DidReceiveChallenge method. This essentially installs the root certificate so that it can be trusted by the application.

if (sessionHandler.UntrustedCertificate != null)
{
   var trust = challenge.ProtectionSpace.ServerSecTrust;
    var rootCaData = sessionHandler.UntrustedCertificate;
    var x = new SecCertificate(rootCaData);

    trust.SetAnchorCertificates(new[] { x });
     trust.SetAnchorCertificatesOnly(false);
    completionHandler(NSUrlSessionAuthChallengeDisposition.PerformDefaultHandling, challenge.ProposedCredential);
}
else
{
    completionHandler(NSUrlSessionAuthChallengeDisposition.CancelAuthenticationChallenge, null);
}

In order to take advantage of the updated NSUrlSessionHandler we need to modify the setup.cs

Mvx.IoCProvider.LazyConstructAndRegisterSingleton<HttpMessageHandler, IServiceOptions>(options =>
{
     var handler = new Xamarin.SSLPinning.iOS.NSUrlSessionHandler
     {
         UntrustedCertificate = NSData.FromFile("kestrel.der")
     };
     return handler;
});

And of course we need to make sure we include the kestrel.der file in the Resources folder. Make sure the Build Action set to BundleResource.

image

Running this up and we get the response back from the service.

image

The big difference with this option is that there’s nothing outside of the application is modified. All the setting up of the trust is done within the application, making it much easier to deploy to any device without having to worry about configuring the device.

Summary of iOS Certificates

Note that we didn’t strictly do certificate pinning – we just allowed the application to connect to a self-signed endpoint. To carry out certificate pinning you can make changes to the DidReceiveChallenge method and determine whether the certificate should be trusted. The ModernHttpClient does have an implementation of a callback that the application can register for in order to determine whether the certificate, and thus the endpoind, should be trusted.

Accessing ASP.NET Core API hosted on Kestrel over Https from iOS Simulator, Android Emulator and UWP Applications.

Accessing ASP.NET Core API hosted on Kestrel over Https from iOS Simulator, Android Emulator and UWP Applications.

This post is a stepping stone to get local debugging working for a Http/2 service over Https from a Xamarin.Forms application. In my post on publishing to Azure I covered the fact that the underlying service receives a Http/1.1 connection, despite applications establishing a http/2 connection. This made it difficult to build out applications that use technology such as GRPC which rely on the http/2 protocol. To make it possible to develop both the mobile app and the services locally, we need to setup the ASP.NET Core debugging to allow the applications (ie each of the supported platforms) to connect.

This post assumes that the ASP.NET Core application is being hosted locally using Kestrel, mainly because of the limitations around http/2 (here and here). By default, when you create an ASP.NET Core application it is setup with multiple launch configurations, allowing you to switch between IIS Express, Kestrel and if you select the Docker option when creating your project, you’ll see an option to launch using Docker (as shown in the following image showing the launchSettings.json for the HeaderHelper project).

image

To switch between the different launch configurations you just need to select the right configuration from the run dropdown in Visual Studio – in this case I’ve selected the HeaderHelper option, which as you can see from the above launch configurations uses the “Project” command name that correlates to hosting using Kestrel (I know, not super obvious, right!).

image

When we run the ASP.NET Core application using the default launch configuration on Kestrel, what we see is that a command window is shown (since Kestrel is basically a console application) and then a browser window is subsequently launched. As you’d expect the out of the box experience is all good – we can see it’s launched the https endpoint and there’s the lock icon to indicate it’s trusted.

image

It’s also interesting to note that the service is returning Http/2 when according to this document (see screenshot below) the default is Http/1.1.

image

Well, it looks like the documentation hasn’t been updated in line with the latest code. If you take a look at GitHub for AspNetCore repository you can see that between the stable v2.2.4 and the v3.0.0-preview4 release there has been a change to the default value.

image

Coming back to our Kestrel hosted ASP.NET Core application, we can see that the endpoint host is localhost, which aligns with what’s in the applicationUrl property in the configuration in the launchSettings.json file. Unfortunately, localhost isn’t great when it comes to working with mobile applications as localhost doesn’t always resolve to the development machine. For example if you’re working with a real iOS or Android device, they’re most likely going to be on the same WiFi network but localhost won’t resolve to machine running the ASP.NET Core application. Similarly if you’re developing on a Windows PC and using a remote Mac to do the build and run the simulator, localhost again won’t resolve to the correct machine.

To solve this, we need to change the Kestrel configuration to expose the service in such a way that it can be accessed via the IP address of the machine where Kestrel will be running. Note that there are plenty of services such as ngrok, portmap.io and Forward which are great and easy to setup for non-secure services. However, once you get into trying to extend the configuration to support Https or Http/2 you end up needing to pay to use their premium service. These services are great if you want to extend beyond the bounds of your firewall but are overkill if all you want to do is expose your service for development purposes.

A much similar alternative is to:

– Change Kestrel to bind to all IP addresses for the host machine

– Add a firewall rule to allow in-bound connections on the posts required for the application

I’ll elaborate on these in more detail – and I’m going to do them in reverse order because the firewall rule is required in order to verify the Kestrel configuration is working when binding to the IP address.

Adding a Firewall Rule for Ports 5001 and 5000 (on Windows)

On Windows, it’s relatively straight forward to add a firewall rule that will allow inbound connections on specific ports. In this case we’re interested in adding a rule that works for ports 5000 and 5001, which are the two ports used in the applicationUrl property of launchSettings.json. Here’s the step-by-step

– Press Start key, type “Windows Defender” and click on the “Windows Defender Firewall with Advanced Security” option

– Click on “Inbound rules” in the left panel

– Click on “New rule” in the right (Actions) panel to launch the New Inbound Rule Wizard

– When prompted for the type of rule, select “Port” and click Next

– Make sure the “Specific local ports” option is selected and enter “5000-5001” (or “5000,5001”) in the text box.

– Click Next, accepting the defaults on the remaining pages of the New Inbound Rule Wizard, through to the final page where you’ll need to give the rule a name before hitting Finish.

Once you’ve created the Inbound rule, any requests made on these ports will be allowed through to whatever service is bound to those ports on your computer. You should disable this rule when you’re not making use of these ports for debugging.

Binding Kestrel to All IP Addresses

This can be done simply by changing the launchSettings.json file to replace localhost with 0.0.0.0:

image

When you rebuild (you may need to force a rebuild as sometimes the change to launchSettings.json isn’t picked up by Visual Studio) and attempt to run the application you’ll see an error page – this is because 0.0.0.0 isn’t actually a real IP address, it’s just the address used in the launchSettings to configure Kestrel to bind to all addresses.

image

If you change the address to use localhost instead of 0.0.0.0 you’ll again see that the api result is returned successfully. However, if you now use the actual IP address of the computer (in this case 192.168.1.107) you’ll see a certificate warning. Clicking the Advanced you can proceed to the site and see the result but the “Not secure” in the address bar will remain.

image

The fact that there’s a security error is going to cause a lot of issues if we don’t resolve it because none of the application platforms (ie iOS, Android, UWP) work well with Https when the certificate can’t be verified. Even if you use certificate pinning (to be covered in a future post) you’ll find it hard to configure the different platforms to work with certificates that don’t match the domain of the service.

If we take a look at the certificate being used, we can see that the Subject Alternative Name only matches with localhost.

image

Luckily this problem can be fixed by changing the certificate that is used by your ASP.NET Core application. If you’re planning on exposing your ASP.NET Core endpoint directly to the internet I would recommend getting a certificate from a well known CA. The following process can be used for setting up your service for development purposes:

If you know what you’re doing you can download the latest openssl and proceed to create your own certificates. However, this is fairly involved and a much similar way is to leverage the mkcert tool that is available at https://github.com/FiloSottile/mkcert. The steps are as follows:

– Download the latest binaries for mkcert (you might want to rename the executable from say mkcert-v1.3.0-windows-amd64.exe to mkcert.exe for convenience)

– Launch a command prompt running as Administrator

– Run “mkcert -install”. If you get an error such as “failed to execute keytool…..”  you probably didn’t read the previous step and opened a regular command prompt. You need to be running as Administrator

image

A successful install should look like:

image

The install process creates a certificate and trusts it on the local computer as a trusted certificate authority, meaning it can be used to generate other certificates.

– Run mkcert to create a certificate that you can use in your ASP.NET Core application

mkcert -pkcs12 -p12-file kestrel.pfx 192.168.1.107 localhost 127.0.0.1 ::1

image

– Copy the newly created kestrel.pfx into the ASP.NET Core project and set the Build Action to Content to make sure it gets deployed with your application.

image

– Remove the applicationUrl property from the Kestrel configuration in launchSettings.json

image

– Update the CreateHostBuilder method in program.cs to setup the Kestrel configuration. Specifically setting up both ports 5001 and 5000 to listen on Https and Http respectively. For port 5001 the kestrel.pfx certificate is used (note despite the advice we haven’t changed the password here but would recommend doing so if you’re going to use this in production)

public static IHostBuilder CreateHostBuilder(string[] args) =>
     Host.CreateDefaultBuilder(args)
         .ConfigureWebHostDefaults(webBuilder =>
         {
             webBuilder
                 .ConfigureKestrel(options =>
                 {
                     options.ListenAnyIP(5001, listenOptions =>
                     {
                         listenOptions.UseHttps(“kestrel.pfx”, “changeit”);
                     });
                     options.ListenAnyIP(5000);
                 })
                 .UseStartup<Startup>();
         });

Now when we run the ASP.NET Core application on the Kestrel hosting we can successfully navigate to the endpoint using the machines IP address.

image

Inspecting the https certificate you can see that the Subject Alternative Names include 192.168.1.107 (ie the machines IP address) and that the Certification path ends in the mkcert certificate that has been added to the trusted certificate authorities on this computer.

imageimage

Now that we’ve configured Kestrel and ASP.NET Core to play nice, what we need to do is to configure our mobile applications to connect to this service, which we’ll do in the next post.

Xamarin and the HttpClient For iOS, Android and Windows

Xamarin and the HttpClient For iOS, Android and Windows

In an earlier post that talked about using dependency injection and registering interfaces for working with Refit across both Prism and MvvmCross I had code that registered an instance of the CustomHttpMessageHandler class which internally used a HttpClientHandler for its InnerHandler. For developers who have spent a bit of time optimising their iOS, Android or Windows application, you’ll have noted that using the HttpClientHandler is generally not deemed to be best practice.  As I’m a big fan of trying to demonstrate best practices, I figured I’d expand on this a little into a post talking about the HttpClient and some of the options you have.

Firstly, a couple of bits of side reading:

What you should gather from these articles is that Microsoft is doing their best to set you up for success but not wanting to take any documentation for granted, let’s see what happens when we create a brand new Xamarin.Forms project and spin up an instance of the HttpClient. When creating the project I just picked the Blank Xamarin.Forms template and made sure that all three platforms were included. The code for creating the HttpClient just uses the zero-parameter constructor:

var client = new HttpClient();

Let’s run each platform and see what the HttpClient gives us (and at this point I haven’t updated any NuGet packages, framework versions or anything. This is just what VS2019 gives me when I create a new XF project).

UWP

image

Here we get the managed HttpClientHandler, rather than the newer (and arguably better) WinHttpHandler. Actually I didn’t find a definitive guide on which is better for UWP, although this stackoverflow post does seem to imply the WinHttpHandler would be the preferred choice, particularly if you want to leverage Http/2.

Android

image

Android is using the AndroidClientHandler which is what should give us the most up to date http experience.

iOS

image

iOS is using the NSUrlSessionHandler which is what should give us the most up to date http experience.

This all seems good (albeit that you might want to use the WinHttpHandler on UWP) so for a lot of developers they might never run into any issues. If you did want to adjust which handler is used on iOS and Android (again assuming you’re just using the HttpClient with the default constructor) you can do so via the properties dialog for the corresponding platform:

image

However, where things come unstuck is if you want to customise some of the http behaviour. In my previous post I demonstrated setting the compression flag but it could have equally been adding an additional header or changing the credentials that are sent as part of each request. In this case, it’s easy enough to use the overload of the HttpClient constructor that takes a HttpMessageHandler and use the managed HttpClientHandler implementation (as I demonstrated). As you’d have seen from the linked articles above, this isn’t ideal as the managed implementation doesn’t leverage the platform specific optimisations.

The better approach is for my application to register the platform specific handler, which in MvvmCross can be done via the Setup class (which is created by default when using MvxScaffolding):

UWP

public class Setup : MvxFormsWindowsSetup<Core.App, UI.App>
{
     protected override void InitializeIoC()
     {
         base.InitializeIoC();
        Mvx.IoCProvider.LazyConstructAndRegisterSingleton<HttpMessageHandler, IServiceOptions>(options =>
         {
return new WinHttpHandler()
             {
                AutomaticDecompression = options.Compression
             };
         });
     }
}

Android

public class Setup : MvxFormsAndroidSetup<Core.App, UI.App>
{
     protected override void InitializeIoC()
     {
         base.InitializeIoC();

 

        Mvx.IoCProvider.LazyConstructAndRegisterSingleton<HttpMessageHandler, IServiceOptions>(options =>
         {
             return new AndroidClientHandler
             {
                 AutomaticDecompression = options.Compression
             };
         });
     }
}

iOS

public class Setup : MvxFormsIosSetup<Core.App, UI.App>
{
     protected override void InitializeIoC()
     {
         base.InitializeIoC();

 

        Mvx.IoCProvider.LazyConstructAndRegisterSingleton<HttpMessageHandler, IServiceOptions>(options =>
         {
             var nsoptions = NSUrlSessionConfiguration.DefaultSessionConfiguration;
             if (options.Compression == System.Net.DecompressionMethods.None)
             {
                 nsoptions.HttpAdditionalHeaders = new NSDictionary("Accept-Encoding", "identity", new object[] { });
             }
             var handler = new NSUrlSessionHandler(nsoptions);
             return handler;
         });
     }
}

Note: for iOS the NSUrlSessionHandler enabled compression by default, so the code here illustrates how you could disable compression if you wanted by sending the identity Accept-Encoding header.

In this post I’ve shown you how you can register each of the native platform handlers to optimise the requests made when using the HttpClient. This post should be read in conjunction with my earlier post that registered the other classes necessary to create the HttpClient based on the registered handler. The only other change is that the HttpService constructor should accept an HttpMessageHandler instead of an ICustomHttpMessageHandler.

public class HttpService : IHttpService
{
     public HttpService(HttpMessageHandler httpMessageHandler, IServiceOptions options)
     {
         HttpClient = new HttpClient(httpMessageHandler as HttpMessageHandler)
         {
             BaseAddress = new Uri(options.BaseUrl)
         };
     }

 

    public HttpClient HttpClient { get; }
}

Update: It’s worth noting that the WinHttpHandler used in the UWP example isn’t part of the core framework. Instead it is accessible via the System.Net.Http.WinHttpHandler NuGet package. Visual Studio provides a handy way to find and install this package – selecting the WinHttpHandler reference (where there is a build error) and looking at the intellisense options, there is an option to Install the System.Net.Http.WinHttpHandler package.

image

Blend Still Lives

Blend Still Lives

I was surprised when editing the XAML of a UWP project that I saw a prompt to open the page in Blend – I’d all but forgotten that Blend exists.

image

On launching Blend I noticed the fancy new splash screen but is the only thing that’s been worked on? Well I currently don’t use Blend, even for UWP development, so I’m not sure why this product even exists, considering most of its features are covered by the new tool windows in Visual Studio.

I did notice that when editing the UWP page, there was at least support for Visual States. Back in its prime, Blend led the way with developer-designer engagement. Now with hot reload support in most major frameworks, the reliance on a design time experience as all but gone away. I think it’s time to say RIP to Blend and move forward with a different approach to XAML developers.

Getting Started with Platform Uno

Getting Started with Platform Uno

A while ago I posted on Building a TipCalc using Platform Uno and at the time there was quite a few steps to jump through to get a basic application running from scratch. In this post I’m going to cover off how incredibly easy it now is to get started with the Uno Platform. Before I get into the steps, I want to give some background on why after almost a year am I coming back to looking at Uno. For those who have been reading my blog or have worked with Built to Roam you’ll know that we specialise in building cross-platform applications, whether it be a mobile app spanning iOS and Android, a Windows app targeting desktop and Xbox, or an enterprise solution that’s available across web, mobile and desktop. With a deep heritage in the Microsoft ecosystem we have seen the emergence of technologies such as Xamarin.Forms – historically this was rudimentary framework for rapidly developing forms based applications, primarily for line of business solutions. We’ve also seen other frameworks emerge such as React Native, Flutter and of course PWAs. Each framework has its advantaged and disadvantages; each framework uses a unique set of tools, workflow and languages. The question we continually ask ourselves is which framework is going to provide the best value for our customers and that will allow us to build user interfaces that include high fidelity controls and rich animation.

We also evaluate frameworks based on the target platforms that they support, which is what has led me to this post. One of the amazing things about Xamarin.Forms is that it has provided support for the three main platforms, iOS, Android and Windows, as part of the core platform. In fact the tag line is currently “Native UIs for iOS, Android and Windows from a single, shared codebase”.

image

What’s mind blowing is if you look at the Other Platforms page you’ll see that there is also support for GTK, Mac, Tizen and WPF. Unfortunately, these other platforms do not get the same love as the core platforms, so don’t expect them to be kept up to date with the latest releases.

At this point you might be thinking, why stray from Xamarin.Forms? Well in recent times there has been a shift away from supporting UWP as a core component of Xamarin.Forms. When asked on Twitter about UWP support for Shell, David Ortinau’s response was just another nail in the coffin for UWP app developers who are already struggling an up hill battle to convince customers of the value proposition of building for Windows.

image

So this leads me to again revisit other frameworks but we find the situation isn’t much better:

  • React Native – iOS and Android only – There is a React Native for Windows but again, it’s not part of the core offering, so it will trail (perhaps not by much but the commit history indicates a difference between 1 day ago for the main Reach Native repo and 26 days ago on the Windows repo, for the most recent commit).
  • Flutter – iOS and Android only – There is work on desktop embedding and having Flutter work on the web, so perhaps we’ll see more support beyond Google I/O
  • PWAs – varying level of support on different platforms – Clearly Microsoft sees this as the path forward for some of their Office suite of apps but the lack of native UI I think is still a limitation of PWAs.

At this point I remembered that Uno provided an interesting take on cross platform development. I also remembered that they’ve been doing a lot of work to support WebAssembly, so perhaps this could be the perfect solution. In the simplest form, the Uno Platform is #uwpeverywhere (an initiative that I’ve long believed Microsoft should have championed, after all it’s called Universal for a reason, right?) but beyond that Uno is about being able to “Build native apps for Mobile and Web using XAML and C#”.

image

Let’s get cracking with building a Uno application and see how it pans out. If you’re on the Uno Platform homepage and wondering how to get started, don’t worry, you’re not alone – I was looking for a big “Get Started” button but instead I see links to sample apps and to the source code. If you find yourself across at the source code, you’re about to embark down the wrong path – you don’t need to grab their source code as everything is distributed via nuget! So where do you go? Well you need to find the Uno Documentation and then click the link to Getting Started – now we’re cooking with gas! Unfortunately most of this page is pretty useless until you come to want to debug your application on WebAssembly. Instead what you really want to do i install the Uno Visual Studio Extension and use that to create your application.

Getting Started

  • Install the Uno Visual Studio Extension
  • Open Visual Studio and select File, New, Project
  • Search for “cross platform” and select the Cross-Platform App (Uno Platform) template

image

  • Important: Update nuget package references – if you don’t do this, it’s unlikely that your application will run as a WebAssembly (check the “Include prerelease” to get the latest update for Wasm support)

image

  • For WebAssembly in the csproj file:
    • Add <DotNetCliToolReference Include=”Uno.Wasm.Bootstrap.Cli” Version=”1.0.0-dev.214″ /> into the same ItemGroup as the PackageReference for Uno.Wasm.Bootstrap
    • Add <MonoRuntimeDebuggerEnabled>true</MonoRuntimeDebuggerEnabled> to the initial PropertyGroup
    • Change the Project element to <Project Sdk=”Microsoft.NET.Sdk.Web”>
  • Build and run each platform – I’m showing UWP, Android and WebAssembly here but iOS works straight from the template too

image

So, now that we have a UWP application that runs on iOS, Android, Windows and Web, are we satisfied with this as a cross platform solution? I think I’m enjoying working in UWP again but it’ll take a bit more investigation to see if this is a viable solution or not.

———-

Contact Built to Roam for more information on building cross-platform applications

———-

Getting Started with Xamarin.Forms and Device Customization using OnIdiom

Getting Started with Xamarin.Forms and Device Customization using OnIdiom

Previous posts in this sequence on Getting Started with Xamarin.Forms:
Multi-Targeting in Visual Studio, SDK Versions, MvvmCross, Authenticating with ADAL
Refactoring MvvmCross and Services, Effects, Navigation with MvvmCross
Presentation Attributes in MvvmCross, Resources and Styles, Resource Dictionaries
Platform Specific Resources with OnPlatform

Last post I covered how to use OnPlatform to tailor resources and styles based on the target platform. However, there is an alternative dimension you can tailor the layout of your application and that’s using OnIdiom. If you look at the definition of the OnIdiom class you can see that it allows you to define different values for Phone, Tablet, Desktop, TV and Watch.

image

To use this in XAML is very similar to using OnPlatform:

<Label>
     <Label.Text>
         <OnIdiom x_TypeArguments=”x:String”>
             <OnIdiom.Phone>Hello from a phone app</OnIdiom.Phone>
             <OnIdiom.Desktop>Hello from a desktop app</OnIdiom.Desktop>
         </OnIdiom>
     </Label.Text>
</Label>

As you can see from the code snippet this provides different string values for when the application is run on a phone vs being run on a desktop.

Note: Tablet only works well for iOS and Android. Xamarin.Forms running on UWP currently doesn’t distinguish between Windows running in desktop or tablet mode, and as such will always use the Desktop idiom values.

Getting Started with Xamarin.Forms, Refactoring MvvmCross and Services

Getting Started with Xamarin.Forms, Refactoring MvvmCross and Services

Previous posts in this sequence:
Getting Started with Xamarin.Forms and Multi-Targeting in Visual Studio
Getting Started with Xamarin.Forms and SDK Versions
Getting Started with Xamarin.Forms with MvvmCross
Getting Started with Xamarin.Forms and Authenticating with ADAL

In this post I’m going to do a bit of a refactor based on the work completed in the previous post where we added code directly into the MainViewModel to use the Azure Active Directory Authentication Library. This would be fine if the MainViewModel was the only view model in the application that needed access to the Authenticate method. As I will probably want to make use of it elsewhere, I’ve decided to refactor that code into a class called CredentialService.

When I wired up MvvmCross a couple of posts ago, I did so without going into much detail on how the relationship between view models and their corresponding page is setup. I’m not going to delve into the inner workings of MvvmCross but suffice to say that there is some reflection magic that goes on based on the names of the classes. A view model with the name MainViewModel will be paired with a page called MainPage.

In addition to the magic that glues the view model and pages together (and thus the navigation model) MvvmCross also has a quite powerful dependency injection framework. The CredentialService that I’ll be creating will be registered with the DI framework as a singleton that can be easily accessed.

Let’s start by creating the CredentialService and it’s corresponding interface ICredentialService in a folder called Services in the Core library.

public partial class CredentialService:ICredentialService
{
     private const string AuthEndpoint = “
https://login.microsoftonline.com/{0}/oauth2/token”;


    private const string ResourceId = “https://graph.windows.net/”;
     private const string TenantId = “[your tenantId]”;
     private const string ClientId = “[your clientId]”;
     private const string RedirectURI = “[your redirectURI]”;


    public string AccessToken { get; set; }


    public async Task<string> Authenticate()
     {
         string authority = string.Format(CultureInfo.InvariantCulture, AuthEndpoint, TenantId);
         var authContext = new AuthenticationContext(authority);


        var result = await authContext.AcquireTokenAsync(ResourceId, ClientId, new Uri(RedirectURI), this.PlatformParameters);
         AccessToken = result.AccessToken;
         return AccessToken;
     }
}

public interface ICredentialService
{
     Task<string> Authenticate();
}

The platform specific code will need to be extracted out of the MainViewModel.Platform.cs into the corresponding CredentialService.Platform.cs. For example the UWP class would be:

public partial class CredentialService
{
     private IPlatformParameters PlatformParameters => new PlatformParameters(PromptBehavior.Always, false);
}

In order to register the CredentialService with the DI framework, we just need to add a small bit of code to the Initialize method of the App class in the Core library

public override void Initialize()
{
     CreatableTypes()
         .EndingWith(“Service”)
         .AsInterfaces()
         .RegisterAsLazySingleton();


    RegisterAppStart<MainViewModel>();
}

The last step is to make use of the service in the MainViewModel. We do this by adding a parameter of type ICredentialService to the MainViewModel constructor.

private ICredentialService CredentialService { get; }
public MainViewModel(ICredentialService credentialService)
{
     CredentialService = credentialService;
}


private async Task Authenticate()
{
     Debug.WriteLine(await CredentialService.Authenticate());
}

And that’s it – we haven’t changed any functionality but the solution is better organised and structured in a way that services can easily be added without cluttering up view models.

image

Getting Started with Xamarin.Forms and Authenticating with ADAL

Getting Started with Xamarin.Forms and Authenticating with ADAL

Previous posts in this sequence:
Getting Started with Xamarin.Forms and Multi-Targeting in Visual Studio
Getting Started with Xamarin.Forms and SDK Versions
Getting Started with Xamarin.Forms with MvvmCross

Now that we’ve got the basics of an application, we’re going to add some authentication using the Azure Active Directory Authentication Library. We’re going to start with registering an application with Azure Active Directory (AAD) (the docs do cover this here but I figured I’d cover it again anyway). Start by heading over to the Azure portal and selecting Azure Active Directory from the set of tabs on the left.

image

In the list of tabs for the AAD, find the App Registrations tab

image

Click “New application registration” and fill in the details for the new app

image

Note that the Sign-on URL doesn’t have to be a real URL, just one that both the portal and the app know about – we’ll use this later! After you’re done creating the app registration you should be able to retrieve the Application ID. Save this information for later as we’ll need it when we’re authenticating the user within our application.

image

The pieces of information you’ll need in order to use ADAL within your application are:

clientId – This is the Application ID that was displayed after you created the app registration in the Azure portal. This is a GUID

redirectUri – This is the Redirect URI that you specified when creating the app registration. If you didn’t write this down, or you want to double check, or change it, you can do so by clicking the Redirect URIs tab under Settings for the app registration. This is a URL (e.g. https://stratapark)

resourceId – This is the identifier of the resource you want to access. In this case we just want to authenticate the user, so we’re going to use the default resource, which is the AAD directory itself, https://graph.windows.net/. This can be a URL or a GUID depending on the type of resource you’re referencing

tenantId – This is the identifier of the tenant that you’re authenticating against. This can be the URL or GUID of your tenant.

To retrieve the tenantId you need to select the Properties tab of the Azure Active Directory and copy the Directory ID

imagehttps://www.nuget.org/packages/Microsoft.IdentityModel.Clients.ActiveDirectory/

Now that we’ve setup the app registration, we’re good to start writing some code. Firstly, we need to add a reference to the ADAL library from NuGet – search for Microsoft.IdentityModel.Clients.ActiveDirectory

image

Add the ADAL library to all projects.

Let’s start with the UI and add a button to the MainPage.

<Button Text=”Authenticate” Command=”{Binding AuthenticateCommand}” />

And of course we need a command within the MainViewModel. In fact we’ll add the bulk of the authentication code to the MainViewModel too:

private IMvxCommand authenticateCommand;
public IMvxCommand AuthenticateCommand => authenticateCommand ?? (authenticateCommand = new MvxAsyncCommand(Authenticate));


private const string AuthEndpoint = “https://login.microsoftonline.com/{0}/oauth2/token”;


private const string ResourceId= “https://graph.windows.net/”;

private const string TenantId = “[your tenantId]”;
private const string ClientId = “[your clientId]”;
private const string RedirectURI = “[your redirectUri]”;


public async Task Authenticate()
{
     string authority = string.Format(CultureInfo.InvariantCulture, AuthEndpoint, TenantId);
     var authContext = new AuthenticationContext(authority);


    var result = await authContext.AcquireTokenAsync(ResourceId, ClientId, new Uri(RedirectURI), PlatformParameters);
     Debug.WriteLine( result.AccessToken);
}

The only thing missing is the PlatformParameters (bolded in the code above). As the name suggests, these are platform specific parameters required by the ADAL library. For each platform we need to expose a property that returns an IPlatformParameters within the MainViewModel.Platform.cs for each platform.

Android

private IPlatformParameters PlatformParameters => new PlatformParameters(CurrentActivity, true, PromptBehavior.Auto);
public Activity CurrentActivity
{
     get
     {
         var top = Mvx.IoCProvider.Resolve<IMvxAndroidCurrentTopActivity>();
         return top.Activity;
     }
}

iOS

private IPlatformParameters PlatformParameters => new PlatformParameters(GetTopViewController(),true, PromptBehavior.Auto);
public static UIViewController GetTopViewController()
{
     var window = UIApplication.SharedApplication.KeyWindow;
     var vc = window.RootViewController;
     while (vc.PresentedViewController != null)
         vc = vc.PresentedViewController;


    if (vc is UINavigationController navController)
         vc = navController.ViewControllers.Last();


    return vc;
}

UAP

private IPlatformParameters PlatformParameters => new PlatformParameters(PromptBehavior.Always, false);

NetStandard

private IPlatformParameters PlatformParameters => null;

Note: you need to provide the NetStandard implementation otherwise the NetStandard target won’t build.

There is one more thing we need to add. Android requires an additional piece of code within the Activity that hosts the Xamarin.Forms application

protected override void OnActivityResult(int requestCode, Result resultCode, Intent data)
{
     base.OnActivityResult(requestCode, resultCode, data);
     AuthenticationAgentContinuationHelper.SetAuthenticationAgentContinuationEventArgs(requestCode, resultCode, data);
}

If your Android application authenticates but doesn’t ever return the access token, chances are that your OnActivityResult override is either missing, or on the wrong Activity – I spent a bit of time trying to work out why iOS and UWP worked but Android would just hang; turns out I was missing this override.

There you have it – you’re good to go with using ADAL to authenticate your users within your Xamarin.Forms application

Getting Started with Xamarin.Forms with MvvmCross

Getting Started with Xamarin.Forms with MvvmCross

Previous posts in this sequence:

Getting Started with Xamarin.Forms and Multi-Targeting in Visual Studio

Getting Started with Xamarin.Forms and SDK Versions

Next up is adding in MvvmCross – no surprises here: Add the MvvmCross package to all projects in the solution

image

We need to make a few adjustments to the Core library. First up, we need to add an App class to Core that inherits from MvxApplication. For the moment the only thing this class is going to do is to set the initial view model of the application. One of the core ideas behind MvvmCross is that navigation is driven from view models, rather than at the view level. By setting the initial view model, we’re effectively defining which view will be shown when our application launches.

public class App : MvxApplication
{
     public override void Initialize()
     {
         RegisterAppStart<MainViewModel>();
     }
}

We’ll do a bit of tidying up whilst we’re making changes to the Core project. We’ll create a ViewModels folder and move MainViewModel into folder

We’ll update MainViewModel and MainViewModel.Platform.cs (all four) to add ViewModels to namespace. We’ll also update MainViewModel to inherit from MvxViewModel.

Now that we’ve updated the Core library, we’ll turn our attention to the UI library and the head projects. We’ll add the MvvmCross.Forms NuGet reference to all projects, except Core.

image

The only other change we need to make to the UI library for the moment is to update MainPage to inherit from MvxContentPage instead of ContentPage. You’ll need to do this in both the xaml and xaml.cs files. However, I would recommend dropping the inheritance from the xaml.cs file as it is not required in multiple places.

Next up we need to adjust each of the head projects (UWP, iOS and Android) so that they use MvvmCross to launch the Xamarin.Forms views.

UWP

Rename MainPage to HostPage (in both MainPage.xaml and MainPage.xaml.cs, and the filenames themselves) in the UWP head project – we do this to avoid any confusion between the name of the page and any views that are automatically associated with MainViewModel. Also update HostPage to inherit from MvxFormsWindowsPage.

For UWP we need an additional step due to some limitation around the support for generics. Add a help class ProxyMvxApplication, defined as follows:

public abstract class ProxyMvxApplication : MvxWindowsApplication<MvxFormsWindowsSetup<Core.App, UI.App>, Core.App, UI.App> { }

Change App.xaml and App.xaml.cs to inherit from ProxyMvxApplication, and remove all code in App.xaml.cs other than the constructor which should contain a single call to InitializeComponent. Override the HostWindowsPageType method in the App class

protected override Type HostWindowsPageType()
{
     return typeof(HostPage);
}

Build and run the UWP application

iOS

Update the AppDelegate as follows

public partial class AppDelegate : MvxFormsApplicationDelegate<MvxFormsIosSetup<Core.App, UI.App>, Core.App, UI.App>
{ }

Build and run the iOS application.

Android

Rename and update the MainActivity as follows. Again, we rename the activity to avoid confusion with any activity or view that would be automatically associated with MainViewModel.

public class HostActivity
         : MvxFormsAppCompatActivity<MvxFormsAndroidSetup<Core.App, UI.App>, Core.App, UI.App>
{ }

Build and run the Android application.

You may experience a build error when you attempt to build and run the Android application, relating to referencing the Mono.Android.Export library. In this case, use the Add Reference dialog to manually add the missing reference.

image

There you have it – all three platforms running Xamarin.Forms application powered by MvvmCross.

Getting Started with Xamarin.Forms and SDK Versions

Getting Started with Xamarin.Forms and SDK Versions

In my previous post I did a walk through of creating a new Xamarin.Forms application and setting up the Core and UI projects for multi-targeting. Whilst I covered updating the various NuGet packages, I didn’t look at the SDK versions for the three platforms. In this post I’m going to look at the options for setting the SDK version, as it’s important that you update this to target the latest SDK version, even if your application is going to support older platform versions.

Android

If you right-click on the Android head project and select Properties you’ll see the Project Properties pane.

Start by increasing the Target Framework by selecting the highest Android version that you have installed

image

Next, on the Android Manifest tab, select “Use Compile using SDK version” under the Target Android version. On this tab you can also set the Minimum Android version if you don’t want to accept the defaults – this may be relevant if you don’t want a massive support matrix for your application as it will prevent installation on devices running a version of Android older than the minimum.

image

Build and run the Android application to make sure you haven’t broken anything and then commit your changes – in this case the first change would have made changes to the Android csproj file, whereas the second change would have changed the AndroidManifest.xml file.

iOS

Setting the SDK Version for iOS is straight forward and the recommendation is to leave the “Default” (which should be the default value) in the SDK Version dropdown on the iOS Build tab on the Properties pane for the iOS application.

image

If you want to adjust the minimum supported version of iOS, you can do this by double-clicking the Info.plist file for your iOS application and then adjusting the Deployment Target.

image

UWP

Both the Target and Min version of the UWP application can be set from the Application tab of the Project Properties pane. Setting the Target version defines the SDK version that will be used to compile the application and thus the APIs that are available.

image


Core and UI

Now that the Core and UI libraries are set to be multi-targeted it is also necessary to define what the target framework/version should be for each platform. If you don’t do this, you may be limited as to what platform APIs are available. Rather than setting these values in each of the libraries, we can create a file, Directory.build.targets, in the solution folder and include the appropriate elements there – this will get included in all projects that support the new csproj format. In this case the contents of our Directory.build.targets file will look like

<Project>
   <PropertyGroup Condition=”$(TargetFramework.StartsWith(‘netstandard’))”>
     <DefineConstants>$(DefineConstants);NETSTANDARD;PORTABLE</DefineConstants>
   </PropertyGroup>
   <PropertyGroup Condition=”$(TargetFramework.StartsWith(‘uap’))”>
     <DefineConstants>$(DefineConstants);NETFX_CORE;XAML;WINDOWS;WINDOWS_UWP</DefineConstants>
     <TargetPlatformVersion>10.0.17134.0</TargetPlatformVersion>
     <TargetPlatformMinVersion>10.0.16299.0</TargetPlatformMinVersion>
   </PropertyGroup>
   <PropertyGroup Condition=”$(TargetFramework.StartsWith(‘Xamarin.iOS’))”>
     <DefineConstants>$(DefineConstants);MONO;UIKIT;COCOA;IOS</DefineConstants>
   </PropertyGroup>
   <PropertyGroup Condition=”$(TargetFramework.StartsWith(‘MonoAndroid’))”>
     <DefineConstants>$(DefineConstants);MONO;ANDROID</DefineConstants>
   </PropertyGroup>
</Project>

The csproj for both Core and UI projects also needs to be updated to replace the target framework MonoAndroid81 with MonoAndroid90.

All your projects should now be targeting the latest framework/sdk versions. If you find that some, or all, of these changes don’t take effect, you may need to either reload specific projects, or restart Visual Studio.

MVX=1: TipCalc – a second example – adding IoC and the Xamarin Android Designer (MVX+1 days of MvvmCross)

MVX=1: TipCalc – a second example – adding IoC and the Xamarin Android Designer (MVX+1 days of MvvmCross)

Following on from the first post in the MVX+1 series, in this post we’ll create a basic Tip Calculator (mirroring the original post from the N+1 series). However, in this case the first section is a more detailed set of instructions on how to get the basics of all three platforms setup with MvvmCross. Going forward we’ll use this as a starting point so that we don’t need to cover over this in each subsequent post.

Source code: https://github.com/nickrandolph/MvxPlus1DaysOfMvvmCross/tree/master/Mvx-01-TipCalc

Getting Started Instructions (Native Apps)

Note: In this case the name of the application is TipCalc but these instructions can be followed to get any new project started by simply replacing TipCalc with the name of your project.

  1. Create a the new solution by creating a new Class Library (.NET Standard) with the project name set to TipCalc.Core and the solution name to just TipCalc.
  2. Add a new project based on the Blank App (Universal Windows) project template called TipCalc.Uwp (make sure that the Minimum and Target versions are set to at least the Fall Creators Update)
  3. Add a new project based on the Android App (Xamarin) project template called TipCalc.Droid (use the Blank app template)
  4. Add a new project based on the iOS App (Xamarin) project template called TipCalc.iOS (use the Blank app template)
  5. Add a reference to MvvmCross NuGet package (v6.0.0 at time of writing to all four projects)
  6. TipCalc.Uwp: Update NuGet package Microsoft.NETCore.UniversalWindowsPlatform to the latest stable version (6.0.8 at time of writing)
  7. TipCalc.Droid: Update the Android version to Use Latest Platform (Project Properties –> Application –> Target Framework)
  8. TipCalc.Droid: Update Xamarin.Android.Support.Design to latest stable version (27.0.2 at time of writing)
  9. TipCalc.Droid: Add a reference to MvvmCross.Droid.Support.V7.AppCompat package
  10. TipCalc.iOS: Unload project; delete packages.config; edit TipCalc.iOS.csproj and add the following ItemGroup
    <ItemGroup>
       <PackageReference Include=”MvvmCross” Version=”6.0.0″ />
    </ItemGroup>

  11. Add a reference to TipCalc.Core to each of the three head projects (ie TipCalc.Uwp, TipCalc.Droid and TipCalc.iOS)
  12. TipCalc.Core: Rename the default Class1.cs to App.cs, and allow Visual Studio to rename class to App
  13. TipCalc.Core: Change the App class to inherit from MvxApplication
  14. TipCalc.Core: Add a folder, ViewModels, and add a class called FirstViewModel.
  15. TipCalc.Core: Change FirstViewModel to inherit from MvxViewModel
  16. TipCalc.Core: Override Initialize method in App to register services and set startup view model to FirstViewModel
    public override void Initialize()
    {
         CreatableTypes()
                 .EndingWith(“Service”)
                 .AsInterfaces()
                 .RegisterAsLazySingleton();
         RegisterAppStart<FirstViewModel>();
    }

  17. TipCalc.Uwp: Add a help class ProxyMvxApplication

    public abstract class ProxyMvxApplication: MvxApplication<MvxWindowsSetup<Core.App>, Core.App> { }
  18. TipCalc.Uwp: Change App.xaml and App.xaml.cs to inherit from ProxyMvxApplication
  19. TipCalc.Uwp: Remove all code in App.xaml.cs other than the constructor which should contain a single call to InitializeComponent
  20. TipCalc.Uwp: Delete MainPage.xaml and MainPage.xaml.cs
  21. TipCalc.Uwp: Add a Views folder, and  add a FirstView based on the Blank Page template
  22. TipCalc.Uwp: Change FirstView.xaml and FirstView.xaml.cs to inherit from MvxWindowsPage
  23. TipCalc.Droid: Add a new class, MainApplication, that inherits from MvxAppCompatApplication
  24. [Application]
    public class MainApplication : MvxAppCompatApplication<MvxAppCompatSetup<App>, App>
    {
         public MainApplication(IntPtr javaReference, JniHandleOwnership transfer) : base(javaReference, transfer)
         {
         }
    }

  25. TipCalc.Droid: Rename MainActivity.cs to SplashScreen.cs and let Visual Studio rename the class
  26. TipCalc.Droid: Rename activity_main.axml to SplashScreen.axml, and adjust layout to indicate application loading
  27. TipCalc.Droid: Adjust SplashScreen class to inherit from MvxSplashScreenAppCompatActivity and set NoHistory to true (since we don’t want the user to be able to press the back button and go back to the splash screen)

    [Activity(Label = “@string/app_name”, Theme = “@style/AppTheme”, MainLauncher = true, NoHistory = true)]
    public class SplashScreen : MvxSplashScreenAppCompatActivity

  28. TipCalc.Droid: Add a folder, Views, and add a new Activity, FirstView.c
  29. [Activity(Label = “FirstView”)]
    public class FirstView : MvxAppCompatActivity<FirstViewModel>
    {
         protected override void OnCreate(Bundle bundle)
         {
             base.OnCreate(bundle);


            SetContentView(Resource.Layout.FirstView);
         }
    }

  30. TipCalc.Droid: Add a new Android Layout to the Resources/Layout folder, FirstView.axml
  31. TipCalc.Droid: You may run into an error: “error XA4210: You need to add a reference to Mono.Android.Export.dll when you use ExportAttribute or ExportFieldAttribute.” If you do, you just need to Add Reference to Mono.Android.Export (search in the Add Reference dialog).
  32. TipCalc.iOS: Update AppDelegate class to inherit from MvxApplicationDelegate, and remove the default code.
    [Register(“AppDelegate”)]
    public class AppDelegate : MvxApplicationDelegate<MvxIosSetup<App>, App>
    {
    }
  33. TipCalc.iOS: Add an Empty Storyboard, called Main.storyboard, to the root of the project
  34. TipCalc.iOS: Add a ViewController to the Main.storyboard using the designer and set the Class and Storyboard ID to FirstView (also make sure the “User Storyboard ID” checkbox is set to true)
  35. TipCalc.iOS: Move the generated FirstView.cs and FirstView.designer.cs files (from the previous step) into a new folder called Views, and adjust the namespace of the FirstView class to FirstView.iOS.Views
  36. TipCalc.iOS: Update the FirstView class to inherit from MvxViewController
    [MvxFromStoryboard(“Main”)]
    public partial class FirstView : MvxViewController<FirstViewModel>

Now to actually build out the Tip Calculator. Rather than embed the calculation logic into our view model, we’re going to abstract it out into a service. To do this we’ll make use of the IoC container made available by MvvmCross. We’ll register a CalculationService which will be injected into our view model constructor.

Let’s continue our development of the Tip Calculator in TipCalc.Core:

  1. Add a folder called Services
  2. Add an interface ICalculationService into the Services folder
    public interface ICalculationService
    {
         double Tip(double subTotal, double generosity);
    }
  3. Add a class, CalculationService, which implements ICalculationService, again into the Services folder
    public class CalculationService : ICalculationService
    {
         public double Tip(double subTotal, double generosity)
         {
             return subTotal * generosity / 100.0;
         }
    }
  4. Add a constructor to the FirstViewModel which accepts an ICalculationService parameter
  5. private readonly ICalculationService _calculationService;
    public FirstViewModel(ICalculationService calculationService)
    {
         _calculationService = calculationService;
    }

  6. Add properties for SubTotal, Generosity, Tip and Total. Each property should take the following form where SetProperty is called within the setter
    private double _subTotal;
    public double SubTotal
    {
         get { return _subTotal; }
         set { SetProperty(ref _subTotal, value); }
    }
  7. Add a Recalc method which will invoke the Tip method on the ICalculationService
    private void Recalc()
    {
         Tip = _calculationService.Tip(SubTotal, Generosity);
         Total = SubTotal + Tip;
    }
  8. Add a call to Recalc into the setter for both SubTotal and Generosity
  9. Set some initial values for the SubTotal and Generosity (if you use the property setters, rather than setting the fields, the Recalc method will be invoked)

That’s it for the core logic for the application. Now we just need to wire up the UI for each platform.

One thing that’s worth noting is that in step 16 of the original setup where the Initialize method is overridden, there is logic in the Initialize method to interrogate the current assembly looking for all classes that end in Service and register them, based on their interface, with the MvvmCross IoC container – this is how MvvmCross knows about the implementation of the ICalculationService which is used when instantiating the FirstViewModel.

Let’s built out the UWP interface in TipCalc.Uwp:

  1. Add the following XAML inside the existing Grid element:
    <StackPanel>
         <TextBlock Text=”SubTotal”/>
         <TextBox Text=”{Binding SubTotal, Mode=TwoWay}”/>
         <TextBlock Text=”How generous?”/>
         <Slider Value=”{Binding Generosity, Mode=TwoWay}”
                 Minimum=”0″
                 Maximum=”100″/>
         <TextBlock Text=”Tip:”/>
         <TextBlock Text=”{Binding Tip}”/>
         <TextBlock Text=”SubTotal:”/>
         <TextBlock Text=”{Binding Total}”/>
    </StackPanel>

That’s the UWP interface done – four elements (with TextBlock headings): TextBox and Slider for inputting SubTotal and Generosity using two-way data binding, and two TextBlock for outputting the Tip and Total amounts.

Now let’s do Android:

  1. Add the following namespace declaration to FirstView.axml
  2. Add the following xml to FirstView.axml
    <TextView
         android_text=”SubTotal”
         android_textAppearance=”?android:attr/textAppearanceMedium”
         android_layout_width=”fill_parent”
         android_layout_height=”wrap_content”
         android_id=”@+id/textView1″ />
    <EditText
         android_layout_width=”fill_parent”
         android_layout_height=”wrap_content”
         android_id=”@+id/editText1″
         local:MvxBind=”Text SubTotal” />
    <TextView
         android_text=”Generosity”
         android_textAppearance=”?android:attr/textAppearanceMedium”
         android_layout_width=”fill_parent”
         android_layout_height=”wrap_content”
         android_id=”@+id/textView2″ />
    <SeekBar
         android_layout_width=”fill_parent”
         android_layout_height=”wrap_content”
         local:MvxBind=”Progress Generosity”
         android_id=”@+id/seekBar1″ />
    <TextView
         android_text=”Tip”
         android_textAppearance=”?android:attr/textAppearanceMedium”
         android_layout_width=”fill_parent”
         android_layout_height=”wrap_content”
         android_id=”@+id/textView3″ />
    <TextView
         android_textAppearance=”?android:attr/textAppearanceMedium”
         android_layout_width=”fill_parent”
         android_layout_height=”wrap_content”
         local:MvxBind=”Text Tip”
         android_id=”@+id/textView4″ />
    <TextView
         android_text=”Total”
         android_textAppearance=”?android:attr/textAppearanceMedium”
         android_layout_width=”fill_parent”
         android_layout_height=”wrap_content”
         android_id=”@+id/textView5″ />
    <TextView
         android_textAppearance=”?android:attr/textAppearanceMedium”
         android_layout_width=”fill_parent”
         android_layout_height=”wrap_content”
         local:MvxBind=”Text Total”
         android_id=”@+id/textView6″ />

In this case we’re leveraging the xml extensions offered by MvvmCross in order to do the data binding using the MvxBind syntax.

Finally, let’s do iOS:

  1. Add the following code to the FirstView.cs
    public override void ViewDidLoad()
    {
         base.ViewDidLoad();

  2.     // Perform any additional setup after loading the view
         var label = new UILabel(new RectangleF(10, 0, 300, 40));
         label.Text = “SubTotal”;
         Add(label);


        var subTotalTextField = new UITextField(new RectangleF(10, 40, 300, 40));
         Add(subTotalTextField);


        var label2 = new UILabel(new RectangleF(10, 80, 300, 40));
         label2.Text = “Generosity?”;
         Add(label2);


        var slider = new UISlider(new RectangleF(10, 120, 300, 40));
         slider.MinValue = 0;
         slider.MaxValue = 100;
         Add(slider);


        var label3 = new UILabel(new RectangleF(10, 160, 300, 40));
         label3.Text = “Tip”;
         Add(label3);


        var tipLabel = new UILabel(new RectangleF(10, 200, 300, 40));
         Add(tipLabel);


        var label4 = new UILabel(new RectangleF(10, 240, 300, 40));
         label4.Text = “Total”;
         Add(label4);


        var totalLabel = new UILabel(new RectangleF(10, 280, 300, 40));
         Add(totalLabel);


       var set = this.CreateBindingSet<FirstView, FirstViewModel>();
         set.Bind(subTotalTextField).To(vm => vm.SubTotal);
         set.Bind(slider).To(vm => vm.Generosity);
         set.Bind(tipLabel).To(vm => vm.Tip);
         set.Bind(totalLabel).To(vm => vm.Total);
         set.Apply();

    }

In this case for iOS we again make use of the data binding support provided by MvvmCross by using the CreateBindingSet method, followed by a call to Bind for each element property we want to bind, and then finally a call to Apply to complete the setup of data binding.

And that’s it – a Tip Calculator for all three platforms.

MVX=0F: A first MvvmCross Application (MVX+1 days of MvvmCross)

MVX=0F: A first MvvmCross Application (MVX+1 days of MvvmCross)

Updated 16/4/2018: Reference to MvvmCross have been updated to v6.0.0

One of the awesome things about MvvmCross is that you can take the exact same set of ViewModels that you used for your UWP, iOS, Android applications and use them in a Xamarin Forms application. As we go through the MVX+1 series, I’ll make some space for talking about Xamarin Forms as well.

In this post we’re going to extent what we started in the previous post by adding a Xamarin Forms interface – this means creating new head projects for iOS, Android and UWP too. All up we’re adding four new projects but fear not, most of the heavy lifting is done by Visual Studio:

Into our existing solution we’re going to add a new Xamarin Forms project:

  1. Add a new Mobile App (Xamarin.Forms) project called FirstDemo.Forms
    image_thumb1_thumb
  2. When prompted, select Blank App, make sure all three Platforms are checked and make sure you select the .NET Standard option (Do NOT use the Share Project option).
    image_thumb3_thumb
  3. Upgrade the Xamarin.Forms NuGet to latest for all four Forms projects (at time of writing is 2.5.1.444934)
  4. Add MvvmCross NuGet Package to all Forms projects (Forms, Forms.iOS, Forms.Android and Forms.UWP)
  5. Add MvvmCross.Forms NuGet Package to all Forms projects (Forms, Forms.iOS, Forms.Android and Forms.UWP)

Note: You may need to upgrade to latest NuGet packages for all Forms projects before you can add references to the MvvmCross packages.

Update the FirstDemo.Forms project

  1. Remove all code in App class except for constructor with a call to InitializeComponent
  2. Create Views folder
  3. Move MainPage into Views folder and rename to FirstView
  4. Adjust FirstView.xaml and FirstView.xaml.cs to change class name to FirstView and to make it inherit from MvxContentPage
  5. Add two Entry and a Label with data binding to FirstView.xaml

Update the FirstDemo.Forms.Uwp project

  1. Update Microsoft.NETCore.UniversalWindowsPlatform (v6.0.8 at time of writing)
  2. Add reference to FirstDemo.Core
  3. Change MainPage to inherit from MvxFormsWindowsPage
  4. Remove all code other than the InitializeComponent method call in the constructor of MainPage
  5. Add ProxyMvxApplication
    public abstract class ProxyMvxApplication : MvxWindowsApplication<MvxFormsWindowsSetup<Core.App, FirstDemo.Forms.App>, Core.App, FirstDemo.Forms.App, MainPage>
  6. Change App.xaml and App.xaml.cs to inherit from ProxyMvxApplication
  7. Remove all code other than the constructor, with a single call to InitializeComponent, in App.xaml.cs

Update the FirstDemo.Forms.Android project

Note (1): If you run into the following error, you may need to rename your project. In this case we renamed it to Forms.Droid (as well as the folder the project resides in)
1>C:Program Files (x86)Microsoft Visual StudioPreviewEnterpriseMSBuildXamarinAndroidXamarin.Android.Common.targets(2088,3): error MSB4018: System.IO.PathTooLongException: The specified path, file name, or both are too long. The fully qualified file name must be less than 260 characters, and the directory name must be less than 248 characters.

Note (2): If you’re using the preview build of Visual Studio, you may run into an error: “error XA4210: You need to add a reference to Mono.Android.Export.dll when you use ExportAttribute or ExportFieldAttribute.” If you do, you just need to Add Reference to Mono.Android.Export (search in the Add Reference dialog).

  1. Change Forms.Android project to target latest Android SDK (v8.1 at time of writing)
  2. Upgrade Xamarin.Android.Support.* to latest for the Forms.Android project
  3. Add reference to FirstDemo.Core
  4. Change MainActivity inheritance, remove code except for a constructor:
    public class MainActivity : MvxFormsAppCompatActivity<MvxFormsAndroidSetup<Core.App, App>, Core.App, App>
    {
    }

Update the FirstDemo.Forms.iOS project

  1. Add reference to FirstDemo.Core
  2. Changed inheritance of AppDelegate
    public partial class AppDelegate : MvxFormsApplicationDelegate<MvxFormsIosSetup<Core.App, FirstDemo.Forms.App>, Core.App, FirstDemo.Forms.App>

And there you have it – you should be able to build and run all three Forms projects utilising the same view models that the non-Forms projects used

MVX=0 : A first MvvmCross Application (MVX+1 days of MvvmCross)

MVX=0 : A first MvvmCross Application (MVX+1 days of MvvmCross)

[Repost: Apologies for those who have already read this but there were some issues with the link generated for the previous post, so I’ve reposted it]

Updated 16/4/2018: Reference to MvvmCross have been updated to v6.0.0

Yes, this is going to be a sequence of posts reworking the infamous N+1 series that Stuart Lodge did starting almost exactly 5 years ago. As we approach the 5 year anniversary of these posts I thought it only fitting to cover this series again as a way of introducing MvvmCross v6 which will be released very shortly has just been released. Unlike the original series that were YouTube videos accompanied by blog posts, this series will only contain the posts, mainly because I find generating videos to be time consuming. Anyhow, here goes:

We’ll start by creating a Blank Solution.

image_thumb4_thumb

Into the solution we’ll add a Core Library that will contain an App class and our first ViewModel:

  1. Add a Class Library (.NET Standard) called FirstDemo.Core
    image_thumb3_thumb
  2. Add a reference to MvvmCross NuGet package (v6.0.0-beta.8 v6.0.0 at time of writing)
  3. Rename the default Class1.cs to App.cs, and allow Visual Studio to rename class to App
  4. Change App to inherit from MvxApplication
  5. Add a folder, ViewModels, and add a class called FirstViewModel.
  6. Change FirstViewModel to inherit from MvxViewModel
  7. Add logic to FirstViewModel to include FirstName, LastName and a calculated FullName
  8. Override Initialize method in App to call RegisterAppStart, specifying FirstViewModel as the startup ViewModel

Let’s start with a Universal Windows Platform UI:

  1. Add a Blank App (Universal Windows) called FirstDemo.Uwp
    image_thumb6_thumb
  2. Make sure Minimum and Target versions are set to at least the Fall Creators Update so that it supports .NET Standard 2.0
    image_thumb8_thumb
  3. Update NuGet package Microsoft.NETCore.UniversalWindowsPlatform to the latest stable version (6.0.8 at time of writing)
  4. Add a reference to MvvmCross NuGet package
  5. Add reference to FirstDemo.Core project
  6. Add a help class ProxyMvxApplication to the FirstDemo.Uwp project – this is a proxy class to compensate for the lack of generics support in XAML
  7. public abstract class ProxyMvxApplication: MvxApplication<MvxWindowsSetup<Core.App>, Core.App> { }

  8. Change App.xaml and App.xaml.cs to inherit from ProxyMvxApplication
  9. Remove all code in App.xaml.cs other than the constructor which should contain a single call to InitializeComponent
  10. Delete MainPage.xaml and MainPage.xaml.cs
  11. Add a Views folder, and  add a FirstView based on the Blank XAML page template
  12. Change FirstView.xaml and FirstView.xaml.cs to inherit from MvxWindowsPage
  13. Add some TextBoxes and a TextBlock to the FirstView, complete with databinding
  14. Hit F5 and run the application (you may have to set the FirstDemo.Uwp project as the startup project and make sure it’s set to build and deploy using the Configuration Manager)

Next let’s add the Android UI:

  1. Add a Android App (Xamarin) called FirstDemo.Droid
    image_thumb10_thumb
  2. Select the Blank App template, and the minimum Android version
  3. Update the Xamarin.Android.Support.Design NuGet package (at time of writing the latest is 27.0.2)
  4. Update the Android version to Use Latest Platform
    image_thumb12_thumb
  5. Add a reference to MvvmCross NuGet package
  6. Add a reference to MvvmCross.Droid.Support.V7.AppCompat package
  7. Add reference to FirstDemo.Core project
  8. Add a new class, MainApplication, that inherits from MvxAppCompatApplication
    public class MainApplication : MvxAppCompatApplication<MvxAppCompatSetup<App>, App>
  9. Rename MainActivity.cs to SplashScreen.cs and let Visual Studio rename the class
  10. Rename activity_main.axml to SplashScreen.axml, and adjust layout to indicate application loading
  11. Adjust SplashScreen class to inherit from MvxSplashScreenAppCompatActivity and set NoHistory to true (since we don’t want the user to be able to press the back button and go back to the splash screen)
  12. [Activity(Label = “@string/app_name”, Theme = “@style/AppTheme”, MainLauncher = true, NoHistory = true)]
    public class SplashScreen : MvxSplashScreenAppCompatActivity

  13. Add a folder, Views, and add a new Activity, FirstView.cs
    1. Add a new Android Layout to the Resources/Layout folder, FirstView.axml, with a couple of EditText and a TextView, all data bound using MvxBind
    2. You may run into an error: “error XA4210: You need to add a reference to Mono.Android.Export.dll when you use ExportAttribute or ExportFieldAttribute.” If you do, you just need to Add Reference to Mono.Android.Export (search in the Add Reference dialog).
    3. Set the startup project to be FirstDemo.Droid and press F5 to run the application

    Lastly, let’s add the iOS UI:

    1. Add an iOS App (Xamarin) called FirstDemo.iOS
      image_thumb2_thumb
    2. Select the Blank App template, Universal devices support and Minimum iOS Version of 11.2
      1. Add a reference to MvvmCross NuGet package
        1. Add reference to FirstDemo.Core project
        2. Update AppDelegate class to inherit from MvxApplicationDelegate
          public class AppDelegate : MvxApplicationDelegate<MvxIosSetup<App>, App>
        3. Add an Empty Storyboard, called Main.storyboard, to the root of the project
        4. Add a ViewController to the Main.storyboard using the designer and set the Class and Storyboard ID to FirstView (also make sure the “User Storyboard ID” checkbox is set to true)
        5. Move the generated FirstView.cs and FirstView.designer.cs files (from the previous step) into a new folder called Views, and adjust the namespace of the FirstView class to FirstView.iOS.Views
        6. Add two UITextField and a UILabel to the FirstView ViewController using the Main.storyboard designer (make sure each element has a Name set so it can be referenced from code)
        7. Update the FirstView class to inherit from MvxViewController
          [MvxFromStoryboard(“Main”)]
          public partial class FirstView : MvxViewController<FirstViewModel>
        8. Add logic to FirstView to enable databinding using the CreateBindingSet extension method
        9. Set the startup project to be FirstDemo.Droid and press F5 to run the application
          Update 16/4/2018: For some reason the iOS App (Xamarin) project template still uses a package.config. During the update to the stable v6.0.0 package the package.config file in FirstDemo.iOS was removed, the reference in FirstDemo.iOS.csproj to MvvmCross was manually removed and the following ItemGroup added:
          <ItemGroup>
             <PackageReference Include=”MvvmCross” Version=”6.0.0″ />
          </ItemGroup>

        The final code is available at https://github.com/nickrandolph/MvxPlus1DaysOfMvvmCross/tree/master/Mvx-00-FirstDemo

        To get this to work I would suggest running the latest Visual Studio for Mac or PC. Hit me up on Twitter or Slack if you have any issues following the steps or running the samples.

        New BuildIt Release for NetStandard 2.0 (General, States and Forms)

        New BuildIt Release for NetStandard 2.0 (General, States and Forms)

        A new release of the following libraries is available via NuGet (v1.1.0.134):

        BuildIt.General

        BuildIt.States

        BuildIt.Forms

        Whilst not much has changed in terms of features, behind the scenes there was quite a significant change as we adjusted the solution/project structure, and thus the nuget package structure. We took advantage of the ability to multi-target which meant we no longer have to have separate projects/libraries in order to support platform specific features. BuildIt.General, which used to have a UWP specific library, is now a single libary. Same goes for BuildIt.States. BuildIt.Forms has two libraries, down from the 5 that it used to have.

        Additionally we also added direct support for netstandard 2.0. As part of the build process, each library is compiled for netstandard 1.0, netstandard 2.0 and then any platforms that have additional features.

        In this release we’ve released multiple packages with the same version number, even though there is an interdependency between them (Forms –> States –> General).

        Please reach out and let me know if you see any issues in this release with any of these libraries. We’ll be working to release updates to the other BuildIt libraries over the coming weeks.

        Building Applications for Platform X

        Building Applications for Platform X

        As we get started with a new year it’s time to pause and think about how the app development ecosystem has evolved, what technologies continue or are emerging, and look at the decision matrix that will define what technology your next application is developed in. I’m going to treat this post as a bit of an intro to some of the technologies that I think are worth further investigation.

        I think the easiest way to do this is to walk the spectrum from web apps through to native platform apps:

        Web Apps

        When we talk about web apps, there is a natural assumption that these will be responsive web sites that will work across a wide range of devices and browsers. However, they can be divided further into what I would consider traditional web sites and single page applications. Whilst this division can be blurred, for example when you host an Angular application within a .NET core application, the point is that there is a difference in the mindset of the developers building the web app.

        Of course, this section includes the obvious ASP.NET Core, React and Angular. Whilst ASP.NET is still a valid choice, I specifically left it out of the list as I think most new projects will favour ASP.NET Core unless there is an impediment that requires full ASP.NET.

        Progressive Web Applications allow web developers to extend their applications to leverage more device capabilities. This is a particularly hot area of development for most platforms as this is seen as one of the best long term solution for minimising mobile development fatigue.

        Hybrid

        Next in the progression are hybrid applications which combine web technologies with a platform specific deployment package – this sounds a bit cryptic but that’s because there are a couple of different models for this.

        Firstly there’s the Cordova/PhoneGap model where the application is defined using html, css, javascript, and wrapped in a native platform deployment package. The deployment step is required in order for most stores to accept applications. The important thing here is that the layout and logic for the application is packaged with the application and that the platform web rendering engine is used to display the application.

        The second model is much more interesting and is one that’s being used by React Native and Native Script where the logic and layout is defined in javascript, css and a form of HTML. The HTML actually defines native elements that will be rendered in the correct location.

        Cross Platform

        Before we get to native platform tools and technologies, we’ll stop in on a long time friend, Xamarin. As with the previous sections there are again two options with Xamarin: traditional Xamarin, and Xamarin Forms. With the traditional Xamarin approach the developer is much closer to the metal and has a higher degree of control. However, the Xamarin Forms option allows for user interfaces to be rapidly developed once, and then feedback/issues are resolved on a platform by platform basis.

        Native Platform

        Lastly, we have the Native platform options for developers:

        Android

        Java, C++ with Eclipse, Android Studio

        iOS

        Objective C, Switft, Interface Builder (now part of XCode)

        UWP

        C#, XAML, Visual Studio (or Visual Studio for Mac)

        As this is hopefully one in a sequence of posts on the topic of framework selection, I’d love some feedback on what technology you think will be important to you and those you work with – comments are off but hit me up on twitter @thenickrandolph if you have thoughts on this.